
© 1997 Austin Software Foundry

The following slide presentation is the property of
Austin Software Foundry. Duplication without the

expressed permission of Austin Software Foundry is
strictly prohibited.

© 1997 Austin Software Foundry

Implementing an Object-
Oriented Software

Development Environment
Using Rose/PowerBuilder

Rational Software User Conference
February 10, 1997

Bill Reynolds Austin Software Foundry

© 1997 Austin Software Foundry

Agenda

l Introduction

l Establishing a Strategic Direction

l Creating a Transition Plan

l Evaluating Results and Iterating

l Rose/PowerBuilder Demo

© 1997 Austin Software Foundry

Objectives

l Present management issues related to
transitioning “traditional” PowerBuilder
development to true object-oriented
PowerBuilder development

l Provide a road map for moving an
organization through that transition

l Demonstrate actual use of
Rose/PowerBuilder on a PowerBuilder
project

l Present actual experiences/results

© 1997 Austin Software Foundry

Company Profile

l Size: Fortune 100
l Industry: Manufacturing

– Discrete Manufacturing
– Continuous Manufacturing
– Natural Resource Management
– Financial Services

l Locations: North America (U.S. and
Canada)

© 1997 Austin Software Foundry

Company IT Profile

l Standards-based Technical Architecture in
place and evolving

l PowerBuilder selected as standard
development tool for 300+ developers

l Experience in C/S Applications with Remote
Data Management Architecture

l Need to move from tactical to strategic
application development

© 1997 Austin Software Foundry

C/S Application Development:
Strategic Business Drivers

C/S Application Development

Time-To-Market
Quality
Total Lifecycle Cost
Application Integration
Business Process Support
Packaged Application

Adaptation/Extension
Electronic Commerce Support

© 1997 Austin Software Foundry

DEVELOPMENT
APPROACH

PACKAGE
ARCHITECTURE

Configurable
(Bus Objects &

Processes)

On-Demand
Assembly

Configurable
(Vendor-

supplied parts)

Change
Package

Change
Business

One-time
Development

Reusable
Parts

(Templates)

Components Objects On-Demand
Assembly

C/S Application Development:
Strategic Technology Drivers

Predominant Packaged Application “Approach”

Predominant Custom Development “Approach”

Distributed Application Development
Application Partitioning
Modular Construction
Componentization

© 1997 Austin Software Foundry

Agenda

l Introduction

l Establishing a Strategic Direction

l Creating a Transition Plan

l Evaluating Results and Iterating

l Rose/PowerBuilder Demo

© 1997 Austin Software Foundry

Software Delivery Environment:
Charter

l Produce a set of end states (5 year targets) that
describe outcomes and capabilities needed by
software and development organization

l Clearly identify the value to the business of these
end states

l Identify the transition strategies and resources
required for implementation

l Establish linkages between required core
competencies and the priorities of strategic
education programs

© 1997 Austin Software Foundry

Software Delivery Environment:
Process

l Strategic Planning Retreat
l Target End State/Transition Plan Approval
l Proof-of-Concept Project: Architecture
l PathFinder Project: Architecture+Process
l Pilot Project(s): Refinement+Metrics
l Organizational Rollout/Standardization

© 1997 Austin Software Foundry

Software Delivery Environment:
End States

Process-Driven
Application
Generation

Model-Driven
Development

Leverage To
Objects

Base
Case

© 1997 Austin Software Foundry

Leverage To Objects

l Delivers solutions when needed,
meeting JIT requirements

l Harvesting and sharing reusable
components

l Standard processes & tools to
integrate, adapt and extend enterprise
application packages as needed

© 1997 Austin Software Foundry

Software Delivery Environment:
Characteristics

Organization
& Management

ArchitecturesProcesses Techniques

Tools People

© 1997 Austin Software Foundry

Target End State
Processes

l Multiple methods for varying needs
– Adaptive, accelerated system delivery
– Package selection and integration
– Software implementation
– Maintenance

l Object Oriented methods
– Harvesting technology
– Component certification
– Reuse enablement

© 1997 Austin Software Foundry

Target End State
Techniques

l Solutions assembled from components
– Purchased components
– Internally developed components

l Business Object Modeling
l Package adaptation uses package

toolsets
l OO wrappers used to ease interfaces
l Techniques monitored for continuous

improvement

© 1997 Austin Software Foundry

Target End State
Architectures

l Supports n-tier implementations
l Solutions are deployed as one to n-tier
l Implementation of business / information

architecture
– Configuring / extending purchased

applications
– Developing niche applications
– OO Wrapping for interfaces

© 1997 Austin Software Foundry

Target End State
Tools

l Standard tools used where possible
l Object modeling tool supports forward &

reverse engineering - “ROUND-TRIP”
l Appropriate tool integration through

process management
l Repository provides facilitation of object

reuse
l Browsing technology provides easy

identification of available components

© 1997 Austin Software Foundry

Target End State
People and Core Competencies

l Object Oriented competencies
– Analysis and design
– Component design and construction
– Design, prototyping and assembly of solutions

l Multiple roles, each with multiple
competencies
– Reuse architect, solution developer
– Component developer, wrapper specialist

l Adaptive, accelerated system delivery

© 1997 Austin Software Foundry

Target End State
Organizational Changes

l Central object library support
– Browsing support
– Component certification

l HR support encourages new roles
– Build reusable components
– Submit components for reuse
– Reuse available components

© 1997 Austin Software Foundry

Target End State
Management Changes

l Ensure end state characteristics are used
to meet business expectations

l Management challenges
– Understanding and implementing the end state

characteristics
– Balancing and prioritizing IT opportunities
– Teaming IT staff and user domain specialists
– Encouraging reuse

© 1997 Austin Software Foundry

Software Delivery Environment:
End State Results

Cycle Time

Quality

Functionality

InvestmentOngoing Costs

Achievability

Supportability

Base Case

Leverage To Objects

© 1997 Austin Software Foundry

Agenda

l Introduction

l Establishing a Strategic Direction

l Creating a Transition Plan

l Evaluating Results and Iterating

l Rose/PowerBuilder Demo

© 1997 Austin Software Foundry

Transition to Objects

l OO Programming 1975, OO Design 1983, OO Analysis 1988
l Both static and dynamic view of systems
l Provides a well-defined interface data structures

customerID
customerName
customerAddress

Customer
orderID
orderDateTime

Order

is billed for

is billed to

places
is placed by

orderItemID
description
availablility

Order Item

Order Is Placed

Order Entry
Clerk

create

Order

retrieveInfo

Customer

create

Order Item

Process

Data/Entity

© 1997 Austin Software Foundry

Transition to Architecture

© 1997 Austin Software Foundry

Transition to Tools

Presentation Integration = Common Look & Feel for all tools

Data Integration = Data shared through common repository
Control Integration = Tool can request services from another tool
Process Integration = Only those tools necessary for user’s role

are accessible

Data Integration

Contro
l In

tegratio
n

P V C
 S

Ratio
nal R

OSE

Oracle
 Tools

Project
Track

ing

Process Integration

Presentation Integration

SQA Team Test

PowerB
uild

er

© 1997 Austin Software Foundry

In
teg

ratio
n

an
d

 P
lan

n
in

g

Development (C1)

Development (C2)

Development (C3)

Transition to Process

Prototype
Iteration
Review 1

Prototype
Iteration
Review 2

Application
Delivery

Increment n

Users

Developers

Users

Developers

Users

Developers

Development
Timebox

© 1997 Austin Software Foundry

Application
Delivery

Increment 1

Application
Delivery

Increment 2

Application
Delivery

Increment 3

Architecture: Coordinating Models

Feasibility

Joint
Requirements

Planning

Infrastructure: Development and Deployment Environment

C
lu

sterin
g

In
teg

ratio
n

an
d

 P
lan

n
in

g

In
teg

ratio
n

an
d

 P
lan

n
in

g

F
in

al
In

teg
ratio

n

Development (C1)

Development (C2)

Development (C3)

Development (C1)

Development (C2)

Development (C3)

Development (C1)

Development (C2)

Development (C3)

Transition to Process

© 1997 Austin Software Foundry

Architecture Manager
OO A&D Specialist/Mentor
Object Administrator
Component Developers

Infrastructure Manager
DB Design Specialist
DB Administrator
Human Factors Eng.
Technical Writer

Application Architects

Testers

End-user Domain Experts

Business Process Analysts

Application Developers

Project Manager

Supplementary Team Roles Component Group Roles

Core Team Roles

End-users

Transition People to new Roles

© 1997 Austin Software Foundry

Agenda

l Introduction

l Establishing a Strategic Direction

l Creating a Transition Plan

l Evaluating Results and Iterating

l Rose/PowerBuilder Demo

© 1997 Austin Software Foundry

Proof-of-Concept Project:
Raw Material Acquisition

l Track the acquisition of raw materials as
they are acquired and moved into plant
inventory

l Develop a common core of components to
standardize the development of raw
material systems company wide

l Managed and mentored heavily by ASF

© 1997 Austin Software Foundry

Proof-of-Concept Status

l Implementation of first timebox
complete

l Proof-of-concept
– partitioned application architecture
– Rational ROSE/PB modeling tool
– iterative development process

l User collaboration key to success

© 1997 Austin Software Foundry

Proof-of-Concept Status
U

se
 C

as
es

K
ey

 C
la

ss
es

C
lu

st
er

s

A
ve

ra
g

e

Estimate Actual

1159

788
1000

920

903

0

500

1000

1500

FTE Days

U
se

 C
as

es

K
ey

 C
la

ss
es

C
lu

st
er

s

A
ve

ra
g

e

Estimate Actual

Estimate

Actual

© 1997 Austin Software Foundry

Key Learnings

l Education must be a full-time pursuit
l Business analysts and developers must

meet in the middle to fill “design gap”
l Use of Rose/PB modeling tool facilitates

collaboration between users/developers
l Use of Rose/PB “Round-Trip” engineering

is difficult for cultural, not technical
reasons

l There is no substitute for discipline and
rigor in the development process

© 1997 Austin Software Foundry

Next Steps

l Launch Pathfinder project
l Begin design of Object Technology

Center
l Communicate learnings and

progress to corporate audience
l Create comprehensive learning

program with immersion training and
OO reading library

© 1997 Austin Software Foundry

Agenda

l Introduction

l Establishing a Strategic Direction

l Creating a Transition Plan

l Evaluating Results and Iterating

l Rose/PowerBuilder Demo

