
Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

The following slide presentation is the property of
Austin Software Foundry. Duplication without the

expressed permission of Austin Software Foundry is
strictly prohibited.

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Architectures for
Object-Oriented

Development

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Topics

• Architecture Overview
• Pattern Overview
• Visual Patterns
• Domain Patterns
• Design Patterns
• Applying Patterns to Web Development

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Software Development Challenges

• Software development organizations are not
keeping up with the demand for new applications,
or maintenance of existing applications

• Software quality is elusive even for the best
development organization

• Line of business software applications are too
expensive

• Demands for collaborative and distributed
applications is increasing

• True distributed application development
(including “the Web”) is much more complex than
client/server development

Copyright 1997 Austin Software FoundryCopyright 1997 Austin Software Foundry

Next | Previous | Home | Last

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Software Development Challenges

• General techniques for designing software do not
address the solution of specific problems, for
example:
– System analysis and design guidelines that objects are found

by discovering people, places and things used in the domain
– System design and construction guidelines for using

inheritance, polymorphism, encapsulation

• General tools for constructing software do not
provide solutions for specific problems
– PowerBuilder doesn’t come with pre-defined classes for

handling collections of business objects
– Rational Rose doesn’t come with templates for classes and

interactions used to model a publish/subscribe architecture

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Software Development Challenges

• Architects have consistently demonstrated the
ability to design and construct amazingly
complex, elegant structures
– The Golden Gate Bridge
– The Empire State Building

• Architects use observed patterns to solve
specific architectural problems not addressed by
general guidelines
“Each pattern is a three-part rule, which expresses a
relation between a certain context, a problem, and a
solution.”
Christopher Alexander, professor of architecture at the University
of California at Berkeley in The Timeless Way of Building

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Architecture-Driven Software

• Complex architectures are based on combinations and
sequences of patterns

• Architecture-Driven Software uses business and
application architectures to design and construct
complex systems reliably

• Architecture-Driven Software is based upon
– Application partitioning and layering patterns and techniques
– Accepted “Visual patterns” that can be used to create

intuitive, easy to use applications
– Accepted “Domain patterns” that can be applied to many

business problems consistently
– Accepted “Design patterns” for solving system infrastructure

problems reliably and predictably

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

What is a “Business Architecture”?
• Business architecture is the

combination/sequence of business patterns that
defines boundaries between business processes
and entities

• Business architectures are expressed as
interactions between the organizational entities,
structures and processes that enable a business
to create and deliver value to its customers

• A business architecture should use at least two
structural business (or domain patterns) to
provide a foundation business architecture
– Use Case: event/entity/rule
– Process: input/activity/output

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

What is a “Business Architecture”

Infrastructure

Domain

Application

Business Objects

Data Mgmt.

Business Events
(Context)

Context Mgmt. Utilities

User Interface

Business Rules

Business Process

Foundation

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

What is an “Application Architecture”?
• Application architecture is the

combination/sequence of system patterns that
defines boundaries between application elements
(classes, components, frameworks)

• These boundaries are expressed as interfaces,
including:
– Conventions for invoking/ordering operations across

boundaries
– Descriptions of operations included in the interface to

components and frameworks

• Distributed systems must use at least two
structural system (or design patterns) to provide
a foundation application architecture
– Layers
– Partitions

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

What is an “Application
Architecture”

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Topics

• Architecture Overview

• Pattern Overview
• Visual Patterns
• Domain Patterns
• Design Patterns
• Applying Patterns to Web Development

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

What is a pattern?

• People apply patterns in many disciplines

Pattern. A fully realized form, original, or model accepted or
proposed for imitation.: something regarded as a normative
example to be copied; archetype; exemplar [Webster’s]

Song Structure
[8 and 12 bar blues]

Architectural Design
[Spanish Colonial, Victorian]

Dress Pattern
[Bridal Gown, Pant Suit]

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

What is a pattern?
• The current use of the term “pattern” is derived from the

writings of architect Christopher Alexander who has
written several books on the topic as it relates to building
architecture

• His work applies to many other disciplines, including
software development

“Each pattern is a three-part rule, which expresses a relation
between a certain context, a problem, and a solution. The
pattern is, in short, at the same time a thing, which happens in
the world, and the rule which tells us how to create that thing,
and when we must create it. It is both a process and a thing;
both a description of a thing which is alive, and a description of
the process which will generate that thing.”

From “The Timeless Way of Building”, By Christopher Alexander

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Patterns as Building Blocks
• “With each pattern the lowest-level

building block is standardized into a larger
chunk or unit”

“As one uses patterns, one
begins to think with that
new building block, rather
than with littler pieces”

From “The Timeless Way of Building”, By Christopher Alexander

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Object-oriented Patterns

• The lowest level building block in object-
oriented development is a class and its
objects

Class Objects

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Object-oriented Patterns
• An object-oriented pattern is an abstraction

of a small grouping of classes and their
relationships that is likely to be helpful again
and again in object-oriented development.

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Types of Object-oriented Patterns
• Visual Patterns

– Help to solve problems in user interface design
– VERY new area of patterns research

– http://www.concentric.net/~tmandel/
– http://c2.com/ppr/ui.html

• Domain Patterns
– Help to solve problems in the business domain
– These patterns are being drawn from data modeling experiences

– Fowler, M., Analysis Patterns: Reusable Object Models, Addison-
Wesley, Reading, MA.

• Design Patterns
– Help to solve problems in software and systems infrastructure

design
– Most of the effort on patterns to date has been here

– http://st-www.cs.uiuc.edu/users/patterns/

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Pattern Systems

• A pattern system for software architecture is
a cohesive set of related patterns which work
together to support the construction and
evolution of whole architectures.

• A pattern system adds deep structure, rich
pattern interaction, and uniformity to a
catalog of patterns.

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Software Pattern History
• 1992: Coad, P., "Object-Oriented Patterns," CACM 35(9),

September, pp. 152-159.
• 1993: Booch, G., "Patterns," Object Magazine 3(2), July-August,

pp. 24-27.
• 1994: Lea, D., "Christopher Alexander: An Introduction For Object-

Oriented Designers," Software Engineering Notes 19(1), January,
pp. 39-45.

• 1995: Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, Reading, MA. (Gang of Four)

• 1996: Buschmann, F., et al., Pattern-Oriented Software
Architecture, John Wiley and Sons, New York, NY. (Gang of Five,
or “the Siemanns book”)

• 1997: Fowler, M., Analysis Patterns: Reusable Object Models,
Addison-Wesley, Reading, MA.

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Topics

• Architecture Overview
• Pattern Overview

• Visual Patterns
• Domain Patterns
• Design Patterns
• Applying Patterns to Web Development

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

 Visual Pattern System Example

Presentation Style Interaction
Platform Specific
Implementation

Pattern
Category

Problem
Category

Structure

Navigation

Graphic
Layout

Page Layout

Data Layout Grid, Freeform, Chart

Header/Body/Foote
r Master/Detail

SDI, MDI, Project, Workbook,
Workspace, Browser

Hypertext

Pulldown Menu, Popup
Menu, Direct Manipulation

Command Line, Menu,
WIMP, Objects

Cursor, Controller, Menu,
Scrollbar, Button

Drag and Drop

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Browser User Interface Pattern

• Problem: You want to create a standard web user-
interface with text on it and links to other web sites

• Example: Your company web site has pages for
products, services, and personnel. Each page can
have multiple links to other web sites.

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

• Solution: Create a frame object that acts as a
container for multiple text pages. Each text page can
have multiple links associated with it

• Pattern Name: Browser

• Intent: The Browser user interface pattern provides
a way to define the portions of a visual browser that
can be reused many times with varied content

Browser User Interface Pattern

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

LinkText Page

Frame Window

Browser User Interface Pattern

ConnectToSite()

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

LinkText Page

YourCompanyFrame

Browser User Interface Pattern
Example

ConnectToSite()

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Topics

• Architecture Overview
• Pattern Overview
• Visual Patterns

• Domain Patterns
• Design Patterns
• Applying Patterns to Web Development

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

 Domain Pattern System Example

Organization Process
Domain Specific
Implementation

Pattern
Category

Problem
Category

Structure

Trading

Diagnosis &
Treatment

Measurement

Inventory &
Accounting

Planning

Accountability

Use Case

Player/Player Role

Plan

Account

Item/Item Description

Quantity
Conversion Ratio

Observation

Contract
Portfolio
Quote

Proposal/Implementation
Action

Transaction

Event/Thing
Remembered

Hypothesis/Projection

Valuation

Billing

Authorization

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Use Case Pattern

• Problem: How do you translate the definition of a
use case: the events, business responses, actors,
etc. into domain objects and relationships?

• How are business objects involved in the use case
managed and coordinated?

• How are logical business transactions defined and
completed?

• Example: A business event occurs when a
customer calls to place an order. Certain inventory
and ordering rules are applied as a clerk takes the
order and requests that the product(s) be pulled from
inventory for shipping.

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Use Case Pattern
• Solution: Create a business component by defining

three distinct elements:
– Business Control (one or more processes triggered by a business event).

Business control objects have a one-to-one relationship to the use cases
defined for an application.

– Business Entity (the data and behavior of real world things that are handled in
the business). Business entities are defined by the business objects identified
during domain analysis (I.e. subject/verb/direct object, crc cards)

– Business Rule (the deterministic or heuristic rules that may alter/dictate the
behavior of a Business Entity in a given use case context)

• Pattern Name: Use Case

• Intent: The use case domain pattern provides a way to
map the definition of a use case into business control,
business entity, and business rule domain objects.

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Use Case Domain Pattern

Business Entity

BusinessRule

Business Entity

BusinessControl

Business Entity

BusinessRule

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Use Case Domain Pattern Example
new_order

part

order_line

order

process_order()
calculate_totals()
calculate_sales_tax()
create_order()
update_order()

is_valid_part()

customer

is_valid_cust()

inventory

are_parts_in_inven()
adjust_inven()

process_line()
calc_line_total()
update_order_line()
get_parts_ordered()

place_order()
commit_order()

1..m

0..m

0..m 0..m

NM_tax

TX_tax

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Topics

• Architecture Overview
• Pattern Overview
• Visual Patterns
• Domain Patterns

• Design Patterns
• Applying Patterns to Web Development

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Design Pattern System Example
Architecture Design

Language Specific
Implementation

Pattern
Category

Problem
Category

Structure

Access

Organization

Creation

Adaptation

Interaction

Distribution

Layer

Partition

Broker

Model-View-Controller

Microkernel

Facade

Adapter

Object Factory
Singleton

Proxy

Command Processor

Observer

Master/Slave

Authorization

Management

Communication

Contract
Iterator

View Handler

Extension
Context

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Observer Pattern

• Problem: Data changes in one place in an application,
but these changes need to be propagated throughout the
system to other objects who are interested in this data.

• Example: You would like to centralize database access
for an applications on a server, but have multiple clients
using different styles of user interfaces be able to view
and update data in the database. When one user
changes the data, other users should see the changes
immediately.

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Observer Pattern

• Solution: Define subject objects with dependent
observers that can be notified when a subject changes

• Pattern: Observer (publish-subscribe)

• Intent: The observer pattern allows a one-to-many
dependency between objects to be defined so that
when one object changes state, all its dependents are
notified and updated automatically.

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Observer Pattern Example

y 50 30 20

x 60 30 10

a = 50%
b = 30%
c = 20 %

 a b c

window1 window2 window3

Change Notification
Requests, modifications

z 80 10 10

 a b

c

subject

observer observer observer

data

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Observer Pattern
• ConcreteSubject notifies its observers whenever

a change occurs that could make its observers’
state inconsistent with its own

Observer

ConcreteObserver

UpdateState()

UpdateState()

Subject

Attach(Observer)
Detach(Observer)
NotifyAllObservers()

ConcreteSubject

GetState()
SetState()

SubjectState ObserverState

0..*

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Observer Pattern Example

is_Window1State

Observer

UpdateState()

Subject

Attach(Observer)
Detach(Observer)
NotifyAllObservers()

N_data

GetState()
SetState()

W_Window1

is_DataState
is_Window2State

W_Window2

UpdateState()UpdateState()

is_Window3State

W_Window3

UpdateState()

0..*

• N_data notifies W_Window1, W_Window2, and
W_Window3 whenever a change occurs

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Model-View-Controller Pattern

• Problem: You would like to design a partitioned
application that is loosely coupled with the flexibility to
physically separate the user interface from application
logic so the user interface can be modified, extended, or
distributed independently of the application logic.

• Example: Your current system design allows users the
choice of displaying data in a spreadsheet window, bar
graph window, and pie chart window. When any user
changes the spreadsheet (data), the other “views”
should reflect the changes immediately.

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Model-View-Controller Pattern

Black

Red

Blue

Green

43

39

6

10

Black: 43%
Red: 39%
Blue: 6%
Green: 10%
Others: 2%

Others 2

Core
Data

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Model-View-Controller Pattern
• Solution: Divide an interactive application into three

types components.
• The model contains the business contexts and business

entities
• The view is a collection of windows to display information

to the user
• The controller acts as a translation device between the view

and model

• Pattern: Model-view-controller

• Intent: In order for a user(s) to request customized
look-and-feel, or to communicate across a distributed
connection, the business logic (model) must be
separated from the user interface (view-controller)

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

 Model-View-Controller Pattern

Model View Controller

mymodel
mycontroller

initialize(model)
makecontroller()
activate()
display()
update()

initialize(model)
makecontroller()
activate()
display()
update()

coredata
setofobservers

mymodel
myview

initialize(model,view)
handleevent()
update()

attach
getdata create

manipulate
display

attach
call service

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

 Model-View-Controller Pattern

n_party w_window n_window_controller

mymodel
mycontroller

initialize(model)
makecontroller()
activate()
display()
update()

initialize(model)
makecontroller()
activate()
display()
update()

color
setofobservers

mymodel
myview

initialize(model,view)
handleevent()
update()

attach
getdata create

manipulate
display

attach
call service

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Topics

• Architecture Overview
• Pattern Overview
• Visual Patterns
• Domain Patterns
• Design Patterns

• Applying Patterns to Web
Development

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

M-V-C + Use Case Pattern

windows Controller Business Control

Business Entities &
 Business Rules

(View) (Control)

(Model)

(Control)

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

 M-V-C + Observer Pattern

Model View Controller

mymodel
mycontroller

initialize(model)
makecontroller()
activate()
display()
update()

Observer

initialize(model)
makecontroller()
activate()
display()
update()

coredata
setofobservers

mymodel
myview

initialize(model,view)
handleevent()
update()

0..*

attach
getdata create

manipulate
display

attach
call service

call update

update

PB

Copyright 1997 Austin Software FoundryCopyright 1997 Austin Software Foundry

Next | Previous | Home | Last

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

DPB
Web.PB

DPB

Copyright 1997 Austin Software FoundryCopyright 1997 Austin Software Foundry

Next | Previous | Home | Last

Web.PB

Copyright 1997 Austin Software FoundryCopyright 1997 Austin Software Foundry

Next | Previous | Home | Last

Next | Previous | Home | Last Copyright 1997 Austin Software Foundry

Questions?

	Copyright
	Architectures for
	Architecture Overview
	Software Development Challenges
	Software Development Challenges Part 2
	Software Development Challenges Part 3
	Architecture-Driven Software
	What is a “Business Architecture”?
	What is a “Business Architecture” Part 2
	What is an “Application Architecture”?
	What is an “Application Architecture?" Part 2
	Pattern Overview
	What is a pattern?
	What is a pattern? Part 2
	Patterns as Building Blocks
	Object-oriented Patterns
	Object-oriented Patterns Part 2
	Types of Object-oriented Patterns
	Pattern Systems
	Software Pattern History
	Visual Patterns
	Visual Pattern System Example
	Browser User Interface Pattern
	Browser User Interface Pattern Part 2
	Browser User Interface Pattern Part 3
	Browser User Interface Pattern Example
	Domain Patterns
	Domain Pattern System Example
	Use Case Pattern
	Use Case Pattern Part 2
	Use Case Domain Pattern
	Use Case Domain Pattern Example
	Design Patterns
	Design Pattern System Example
	Observer Pattern
	Observer Pattern Part 2
	Observer Pattern Example
	Observer Pattern Part 3
	Observer Pattern Example Part 2
	Model-View-Controller Pattern
	Model-View-Controller Pattern Part 2
	Model-View-Controller Pattern Part 3
	Model-View-Controller Pattern Part 4
	Model-View-Controller Pattern Part 5
	Applying Patterns to Web Development
	M-V-C + Use Case Pattern
	M-V-C + Observer Pattern
	PB
	DPB + Web.PB
	DPB
	Web.PB
	Questions?

