
Object-Oriented PowerScript
Programming

A white paper by D. William Reynolds, Jr.

 1996, D. William Reynolds, Jr. and Austin Software Foundry

I

Basic Elements of the PowerScript Programming Language1
Level of Abstraction ..2
Data..4

Language Syntax, Semantics and Control StatementsLanguage Syntax, Semantics and Control Statements .. 6
Dot Notation .. 7
Pronouns ... 7
Variables .. 8
Operators ... 9
Expressions... 10
Command Statements.. 10
Functions and Events .. 12

SubprogramsSubprograms .. 13
ModulesModules... 13
AssignmentAssignment... 13
Type CheckingType Checking ... 14

Fundamental PowerScript Concepts ..15
Data TypesData Types ... 15

Any Type .. 16
Enumerated Types.. 16
Standard Types... 17
Class Types ... 17

Composite Types .. 18
Structures .. 18
Arrays and Strings.. 21

Attributes (or Properties)Attributes (or Properties) ... 22
Declarations... 22
Scope.. 23
Access Rights ... 25

Messages and MethodsMessages and Methods .. 26
Message Direction.. 26
Message Access Rights... 26
Message Name Resolution.. 27
Message Timing.. 28
Message Parameters.. 28
Method Computational Intensity .. 28
Method Location... 29

EncapsulationEncapsulation .. 29
InheritanceInheritance ... 30
Polymorphism ... 31

Static and Dynamic Typing.. 32
Inclusion Polymorphism.. 33
Operational Polymorphism.. 34

System Class Library...34
Programming Style and Design Considerations39

Programming Styles Supported by PowerBuilderProgramming Styles Supported by PowerBuilder ... 40
Procedural Style.. 40
Object Based Style ... 41

17 MARCH, 1998 POWERSCRIPT WHITE PAPER

 1996 AUSTIN SOFTWARE FOUNDRYII

Object-Oriented Style ... 41
Strongly Typed Object-Oriented Style ... 41
Weakly Typed Object-Oriented Style ... 41
Difficulties of Mixed Styles .. 42

Guidelines for an Object-Oriented Programming StyleGuidelines for an Object-Oriented Programming Style .. 42
Class Design.. 42
Hierarchy Design .. 43
Design vs. Implementation.. 43

Program Code Conventions and StandardsProgram Code Conventions and Standards.. 43
Case.. 44
Considerations when Naming Variables ... 44

Summary ..44

1

The PowerScript Language

This paper covers the basic concepts and structure of the PowerScript language, focused on
using it for object-oriented programming. Object-oriented programming languages actually have
a great deal in common with procedural languages, so this paper also approaches PowerScript
within a framework that can be applied to any programming language. This is valuable for a
couple of reasons. First, understanding a programming language’s underlying principles and
structure can save you considerable time and effort by providing clear guidelines for using it
correctly. Second, you should be able to use this framework to compare whatever other
programming language you’re most familiar with to PowerScript, and ease your transition to this
very powerful new language.

The paper assumes you are already familiar with the main features and syntax of PowerScript
from your previous PowerBuilder programming, so it is not an exhaustive, detailed presentation
of the syntax. Instead, it is designed to give you a solid understanding of PowerScript as a
programming language, not just “scripts” used inside of a “GUI builder”, as is often the mistaken
impression of PowerBuilder and PowerScript. If you’re not familiar with the language syntax, your
PowerBuilder manual and online help system are the best place to turn for these specifics.
Throughout the rest of the book I’ll assume if you are uncertain of the syntax in an example that
you’ll turn to the documentation for clarification. Instead of syntax, this paper presents the
broader concepts you need to work with the newest release of PowerBuilder, and lays the
foundation for future discussion of the most important and often misunderstood feature of the
language, object references. It also presents the basic programming styles provided in the
language and helps you decide which is best suited to your task and experience level.

With the release of PowerBuilder 5.0, the PowerScript language has several new and long-
awaited features. One of the most obvious is the new editor, with color coding, which can be
customized in the PowerScript painter property sheets, to identify datatypes, system level
functions, flow-of-control statements, comments, and literals. It will automatically indent scripts
based on flow-of-control statements. These features make the language in general much easier
to use. The key language enhancements are the addition of constants, changes in how you
access global variables (and better detection when a global overrides a local variable), new ways
to control the access to a particular variable, function name overloading, and a series of
enhancements to functions and events. Most of these enhancements have been added in
response to the needs of a maturing and more sophisticated programming community, and are
aimed at experienced PowerBuilder and object-oriented developers. This paper will give you a
place to begin as you start to assimilate these features into your everyday PowerBuilder
programming repertoire.

Basic Elements of the PowerScript Programming Language
The introduction of the PowerBuilder visual development environment five years ago was a
breakthrough for everyone involved in writing high level software applications (applications
above the level of things like device drivers, memory management utilities, and commercial
applications like word processors and spreadsheets) for the Windows environment. It shielded
us from the complexity of the Windows Software Developer’s Kit API and C or C++ memory
management. It transformed a large portion of our programming tasks (describing our
application to the computer in terms of program code - text) into “painting” tasks where we

17 MARCH, 1998 POWERSCRIPT WHITE PAPER

 1996 AUSTIN SOFTWARE FOUNDRY2

describe our application by drawing it and letting PowerBuilder generate the code for the
computer to execute. But even with the visual programming tools in PowerBuilder, we still have
to write event scripts and functions in program text in order to help PowerBuilder generate all of
the code necessary for a complete application. In fact, as the complexity of your PowerBuilder
applications grow and you begin to use more sophisticated techniques like application
partitioning and nonvisual objects, it’s necessary to write more and more actual code in
PowerScript. PowerScript is a relatively simple language to learn since its syntax is similar to
languages most of us have learned - Basic, Pascal, C, etc. In fact, the syntax was largely
modeled on Microsoft QBASIC. The simplicity of the syntax, and the visual tools provided in the
PowerBuilder environment, tend to hide some of the very powerful elements of PowerScript,
mainly the object-oriented features drawn from C++, Eiffel and Smalltalk. In order to uncover this
power and learn to harness it, it helps to understand some basic principles and concepts
underlying the PowerScript programming language. It is also very helpful to study QBASIC, C++,
Eiffel and Smalltalk to develop a broader understanding of the “whys” of the PowerScript
language. We’ll start by examining the seven basic elements of a programming language, and
how they are implemented in PowerScript.

Level of Abstraction
All programming languages provide some level of abstraction above the level at which the
computer actually executes instructions. I’ll never forget one of my first programming classes at
The University of California at Berkeley. My professor introduced us to programming by having
us write a simple program IN BINARY on a DEC PDP-11. We actually had to key the program in
with toggle switches where up meant 1 and down meant 0. That was tedious! Next, he taught
us assembly language and then C. It was one of the hardest courses I took but probably the
most valuable. The binary routines we wrote were directly implemented by the computer and
gave us complete control over things as basic as how the computer booted itself, but would have
been impossible to use to write a business application. Binary programs like this could be
considered first generation programming languages. Assembler, a second generation language,
was an improvement in programming efficiency and still gave us very precise control over the
use of the computer’s internal registers and memory structure. The problem was, except for
tasks that required this level of control, it still wasn’t terribly efficient to program in assembler.
Our next language, C, still provided access to many of these low level aspects of the computer,
but gave us higher level abstractions like data types (for example float, char and int), structures,
arrays, flow-of-control statements and functions. These made it much more efficient to structure
and write applications for more general problems like business systems, word processors and
even compilers. C and other languages like Fortran, COBOL, and Pascal are considered to be
third generation languages - three steps removed from the hardware.

Each level of abstraction away from the computer has two consequences. First, it improves the
efficiency of the programmer using it by providing language elements that automate lower level
functionality. Second, details are lost as higher level abstractions are used. This is an obvious
tradeoff, the efficiency of the programmer versus access to low level details of the computing
environment. The trick is to optimize this tradeoff. Those of us building business applications
with PowerBuilder certainly need to optimize our development time and likely don’t need access
to bit level memory manipulation. Where we do, PowerBuilder provides access to lower level
languages like C and C++ through external function calls.

Like C++ and other object-oriented languages, PowerScript provides one very important
abstraction beyond C, Fortran, COBOL and Pascal. It provides the ability for programmers to
define their own new data types. Integers, doubles and floats are useful data types (I’ll refer to
these as standard data types), or abstractions. A data type is simply a set of values and a set of
operations on those values. An integer is a number and you can add, subtract, multiply and

POWERSCRIPT WHITE PAPER 17 MARCH, 1998

 1996 AUSTIN SOFTWARE FOUNDRY 3

divide them. But these standard data types alone are not sufficient abstractions for all problems
encountered by programmers. In fact, it would be unrealistic to expect language designers to be
able to come up with all of the abstractions needed by programmers. Instead, object-oriented
languages allow programmers to define their own data types, or abstractions, using yet a higher
level abstraction from procedural languages - a class. A class is created by combining lower
level abstractions like floats, integers and functions. A class used at runtime is called an object
and is similar to a variable, it’s just more complex. Like a variable that is created from the
standard data types integer or string and used at runtime to hold actual data, a class is used to
define objects for use at runtime that hold actual data. We’ll spend lots of time discussing how
and when to use classes and objects through the rest of the book. An example of a simple class
definition (the definition of a new data type) is shown in the following listing of exported
PowerScript syntax. This definition is very similar in content, if not exact syntax, to the definition
of a class in C++, Smalltalk or Eiffel. The example is the definition of a “book” data type for an
on-line library catalog application.

001 forward

002 global type n_book from nonvisualobject

003 end type

004 end forward

005 global type n_book from nonvisualobject

006 end type

007 global n_book n_book

008 type variables

009 Private:

010 Protected:

011 stringis_title

012 stringis_author

013 Public:

014 end variables

015 forward prototypes

016 public function boolean nf_set_title (string as_new_title)

017 public function boolean nf_set_author (string as_new_author)

018 end prototypes

019 public function boolean nf_set_title (string as_new_title);IF NOT
IsNull(as_new_title) THEN

020 is_title = as_new_title

021 RETURN TRUE

022 ELSE

023 RETURN FALSE

024 END IF

025 end function

17 MARCH, 1998 POWERSCRIPT WHITE PAPER

 1996 AUSTIN SOFTWARE FOUNDRY4

026 public function boolean nf_set_author (string as_new_author);IF NOT
IsNull(as_new_author) THEN

027 is_author = as_new_author

028 RETURN TRUE

029 ELSE

030 RETURN FALSE

031 END IF

032 end function

033 on n_book.create

034 TriggerEvent(this, "constructor")

035 end on

036 on n_book.destroy

037 TriggerEvent(this, "destructor")

038 end on

• Listing 1. PowerBuilder class definition of n_book.

There is a tendency when first learning a programming language to focus on how to make the
language perform actions using its statements and commands, especially in procedural
languages. These are certainly important abstractions that a higher level language provides for
us. After all, the goal of a program is to do something, right? But in object oriented programming
languages, statements and commands are used to manipulate the data used to represent
another abstraction, some new object. And that’s the critical leap to make, using objects as the
primary abstraction for designing and structuring your programs. It’s pretty hard to design a
program using an abstraction you’re unfamiliar with, so studying the lower level aspects of the
language that will allow you to structure how these objects are represented is where we need to
focus next.

Data
What do I mean by “data” in the context of a programming language? Webster’s Dictionary
defines datum (the singular form of data) as “a fact on which reasoning is based”. In the context
of a computer or a programming language we often use the term data to mean the electronic
representations of facts, that we can then apply various operations to. In order to store facts, or
data, in the computer we have to identify what type of data must be stored so the computer
knows how to store it, and what operations can be applied to it so the computer knows what it
can to do with that data. In PowerScript an integer is a type of data that can take on a finite set of
values from -32,768 to +32,767, uses 16-bits of memory, and can have a set of operations
applied to it including addition, subtraction, multiplication, and division. The book class (n_book)
in the previous listing is a type of data that can take on an infinite combination of values for title
and author, takes 1,400-bytes of memory, and can have operations applied to it to set new
author and title values. So, two of the most important concepts related to data in a programming
language are the type of data to be stored, and the operations that can be applied to it. I’ll
discuss the types of data in more detail later in the paper.

There are essentially five categories of data used in PowerScript; literals, variables, constants,
enumerations, and composites. Literals are specific values used directly in the body of your

POWERSCRIPT WHITE PAPER 17 MARCH, 1998

 1996 AUSTIN SOFTWARE FOUNDRY 5

programs such as 365, 3.14159, ‘x’, FALSE, or “Joe”. The value of a literal is fixed. A variable is
a name given to the spot allocated in memory to hold a value of a specific type of data like an
integer or a string. The value in that spot can change during the course of a program. A
constant is the name given to a variable that cannot change value during the course of the
program. The release of PowerBuilder 5.0 brings a new keyword, CONSTANT , to your
PowerBuilder programming repertoire. You can use this keyword to modify any declared variable
of a standard or enumerated type to be a constant. Doing so changes it from a variable that is
evaluated at runtime, as all were formerly, to one that is evaluated at compile time. After you
declare a constant, you can use it anywhere you would use a value; but if you try to assign to it,
the compiler will flag it as an error. An enumeration is a variable that can be assigned a fixed
set of values. Values of enumerated data types always end with an exclamation point (!). An
example is the WindowType attribute of a window in PowerBuilder. It can only take on the finite
set of values [Main!, Child!, Popup!, Response!, MDI! and MDIHelp!]. Finally, a composite is a
combination of one or more variables, constants or enumerations. They can hold any amount
and type of data defined by the programmer. Arrays, structures and objects are examples of
composite data. They typically have certain unique operations that can be applied to them to
make them more convenient to use. The next listing shows examples of these five categories.

001 //"Ernest" is a Literal

002 IF is_author <> "Ernest" THEN RETURN

003 //is_author and ii_num_pages are Variables

004 stringis_author

005 integer ii_num_pages

006 //IS_HOMECITY and IR_PI are Constants

007 constant string IS_HOMECITY = "Austin"

008 constant real IR_PI = 3.14159265

009 //ie_toolbaralignment and ie_windowstate are Enumerations

010 ToolBarAlignment ie_toolbaralignment

011 ie_toolbaralignment = AlignAtTop!

012 WindowState = ie_windowstate

013 ie_windowstate = Normal!

014 //iwi_main and inv_book are Objects

015 w_main iwi_main

016 iwi_main = CREATE w_main

017 n_book inv_book

018 inv_book = CREATE n_book

• Listing 2. Five categories of data used in PowerScript .

The last example in the listing is probably the newest to you and is what distinguishes object-
oriented languages from procedural languages. We’ll spend much more time on it throughout
the rest of the book because it’s not quite this simple. All of the categories discussed above can
be used to create a composite data type. A class definition is the most complex form of
composite data because you can define new operations on it (functions and events), which you
can’t do for arrays and structures. The class definition is then used to declare and create an

17 MARCH, 1998 POWERSCRIPT WHITE PAPER

 1996 AUSTIN SOFTWARE FOUNDRY6

object, as in the last example in the previous listing. Once you have created objects in your
program you can then manipulate them using their operations. In order to do this you’ll need
some commands and statements to control the flow of your program.

Language Syntax, Semantics and Control Statements

The syntax of a programming language is a set of rules that define what sequences of symbols
are considered to be valid expressions, or programs, in the language. This set of rules is
expressed using a formal notation. I have often remarked to students that PowerScript is almost
“syntax-less”. What I mean is that the set of rules for expressions is very small. The release of
PowerBuilder 5.0 may cause me to think twice before I make that remark again, because it does
introduce a significant number of new rules to the language. Even so, the syntax of almost any
programming language is the easiest part to learn and I still believe that the PowerScript syntax
is simple and straightforward. It’s the semantics of the language that can be difficult to learn.

By semantics, I am referring to the meaning of an expression in the specific context of a
program. “The bull is in the pen.” and “The ink is in the pen.” require a deeper understand of
English than just sentence structure (syntax). The context and underlying meaning are essential
to understanding which type of “pen” is being referred to. At any point in time during its
execution the “context” of a program can be described by its state (the current contents of
memory and the next instruction that’s about to be executed). That next instruction will change
the state of the program, but will it result in a correct state and exactly what are all of the
implications of this change to the program’s state? It’s necessary to understand what’s in
memory and how the next instruction will affect memory to be sure that the state change will
result in the desired new state. In the following example listing, what do you need to know to
figure out what will happen at runtime when lines 002 and 003 are executed? This question has
to do with object-references, the subject of another paper.

001 //Clicked event for m_checkoutbook

002 inv_book = inv_library_item

003 inv_book.TRIGGER DYNAMIC FUNCTION CheckOut()

• Listing 3. PowerScript semantics .

The Eiffel object-oriented programming language actually has a syntax for testing the state of a
program and ensuring that an instruction started and ended with a valid state. These are called
“assertions” in Eiffel and result in extremely robust programs. They can help insure that in
situations like the one in the example above the program is in a valid state to execute those lines
of code. We don’t have assertions in PowerBuilder, but with a solid understanding of what’s
going on behind the scenes and some programming discipline you can program this kind of
reliability into your PowerBuilder applications!

PowerScript language syntax consists of 14 basic elements; comments, identifiers, dot notation,
labels, reserved words, pronouns, statement continuation and separation, white space,
variables, operators, expressions, command statements, functions and events, and SQL
statements. I don’t plan to cover all of these elements. Many of them are straightforward and
presented well in the product documentation on the PowerScript language. I will cover only those
that are either key to using the object-oriented features of PowerBuilder or are not presented in
the documentation.

POWERSCRIPT WHITE PAPER 17 MARCH, 1998

 1996 AUSTIN SOFTWARE FOUNDRY 7

Dot Notation

Dot notation is a technique used in object-oriented languages in order to extend procedural style
variable and function names so they can be referenced from outside of an object they are
declared within. A variable or function may be preceded by one or more object names, each
separated by a “dot”. An example is a control, cb_OK, inside of a main window, w_main. This
control contains a variable called “Text” and a function called “Resize(width, height)”. A program
or object outside of the window this control is displayed on can access these members of cb_OK
with the following dot notation:

001 w_main.cb_OK.text = “Save”

002 w_main.cb_OK.resize(400, 100)

• Listing 4. PowerScript dot notation .

The attribute (or property) and function “Text” and “Resize(width, height)”, respectively, are said
to be members of cb_OK, and cb_OK is said to be a part of w_main.

In PowerBuilder 5.0 dot notation has been extended to DataWindow objects, both within
DataWindow controls and within the new DataStore nonvisualobjects. A DataStore is nothing
more than a DataWindow object embedded within a nonvisualobject. The nonvisualobject acts
like a wrapper around the DataWindow object, just like a DataWindow control does. In order to
reference a specific value in a DataWindow object inside either a control or nonvisualobject you
can now use the following dot notation syntax:

001 //Access a data value within a DataWindow object

002 dwcontrol.Object.columnname.buffer.datasource

003 datastore.Object.columnname.buffer.datasource

004 //Access a nested object within a DataWindow object

005 dwcontrol.Object.objectname.attribute
006 datastore.Object.objectname.attribute

• Listing 5. PowerScript dot notation for DataWindow and DataStore object .

Pronouns

There are four pronouns in PowerScript - THIS, PARENT, PARENTWINDOW, SUPER. They
are described in the PowerScript documentation as generic references to objects. Additionally, it
is important to recognize that they are actually expressions that are evaluated (computed) each
time they are encountered in a program. The resulting value they return is a reference to an
object. THIS computes a reference to the object itself. PARENT computes a reference to the
object that contains the object itself. PARENTWINDOW computes a reference to the window
that contains a Menu object. SUPER computes a reference to an object’s immediate ancestor.
These references can the be used directly;

001 Close(THIS)

17 MARCH, 1998 POWERSCRIPT WHITE PAPER

 1996 AUSTIN SOFTWARE FOUNDRY8

• Listing 6. PowerScript pronouns .

or assigned to a variable and used in subsequent expressions without recomputing them.

001 window lwi_this

002 lwi_this = THIS

003 RETURN lwi_this

• Listing 7. PowerScript pronouns in expressions .

The implication of the second usage is that it will always be more efficient to use the pronouns to
compute a reference once, assign it to a variable, then reuse that variable throughout a given
script. PowerBuilder then doesn’t have to recompute the value of the pronoun every time it
encounters it separately in the program. There are also other implications to this characteristic of
pronouns that we’ll cover in a future publication.

Variables

Variables within PowerBuilder are one of the significant discussion in a future publication, but I’ll
review a few aspects of them here along with a new feature in PowerBuilder 5.0. The key to
preparing yourself for the discussion of references is to remember that variables are nothing
more than a name for a spot in memory. That spot may contain an integer, a string, an object,
or any other legal data type in PowerBuilder. Variables in PowerBuilder can have one of four
levels of scope; local, instance, shared or global. Variables with instance scope are declared
within a class definition and are “owned” by each instance, or object, of that class declared at
runtime in the program. These instance variables have an additional property attached to them,
access rights. This property is discussed in more detail later in this paper, but briefly, an instance
variable can have public, protected or private access rights. Public access rights means the
variable is visible to all other objects, protected access rights means it is visible only to
descendants of the object where it is declared (members of that object’s “family tree”), and
private access rights means that no script outside of the object where the variable was declared
has access to it. PowerBuilder 5.0 has added a new twist to variable access, however.

Access rights refers to the visibility of an instance variable outside of the class it is declared in.
The new property of instance variables is read/write access. In addition to controlling the visibility
of an instance variable, you can now control modifications to the value(s) it contains. Public
instance variables can be declared to have PROTECTEDREAD/PROTECTEDWRITE or
PRIVATEREAD/PRIVATEWRITE. Protected instance variables can be declared to have
PRIVATEREAD/PRIVATEWRITE. Private instance variables don’t need any further protected
since they aren’t visible anyway. These keywords behave very similar to the PROTECTED and
PRIVATE access rights keywords. For example, PROTECTEDREAD means only scripts for the
object and its descendants can read the variable. PROTECTEDWRITE menace only scripts for
the object and its descendants can change the value of the variable. Thus the following
declaration of an instance variable:

POWERSCRIPT WHITE PAPER 17 MARCH, 1998

 1996 AUSTIN SOFTWARE FOUNDRY 9

001 Public:

002 PROTECTEDWRITE string is_customer

• Listing 8. Instance variable declarations .

would result in all scripts in an application being able to access is_customer, but only scripts in
the customer object or its descendants could modify its value. I don’t recommend the use of
these new keywords in a fully object-oriented application, since they encourage you to allow full
or partial violations to the principle of encapsulation. They are one of those language features
provided by Powersoft for programmers who are not comfortable yet with the object-oriented
programming style. We’ll discuss the various programming styles that PowerBuilder can support
later in the paper and I’ll make some recommendations of things to use and to avoid with each
style.

Operators

The operators provided in PowerScript are relatively straightforward and fall into 5 categories:
arithmetic (+, -, *, /, ^), logical (=, <, >, <>, <=, >=), relational (NOT, AND, OR), concatenation
(+) and navigation (object::member, object`nestedobject, ::globalvariable). Except for the
navigation operators, which are difficult to find any reference to in the documentation and are
related exclusively to object-oriented programming, the operators provided by PowerScript are
relatively standard and should not be a source of mystery or confusion. The navigation
operators, on the other hand, may be somewhat mysterious.

The three navigation operators in PowerScript are referred to as membership (object::member
), nested object (object`nestedobject) and global scope (::globalvariable) operators. They all
provide ways to navigate among references to objects. The first two provide mechanisms for
navigating among related objects in an inheritance hierarchy or in an aggregation, respectively.
The global scope operator provides a mechanism for navigating among object references in an
application. The membership operator separates an object reference from a member function or
event. The nested object operator separates a parent object reference from a child object
reference in an aggregation. The global scope operator forces PowerBuilder to use a global
variable even if there is a local or shared variable with the same name. The only acceptable use
of a global variable in object-oriented programming is as a reference to an object, so this
operator will allow you to force PowerBuilder to skip over local and shared object references to a
global reference. The examples in the following listing should give you some ideas of the
combinations that are possible:

001 /***

002 Script in the constructor of the commandbutton w_dialog`cb_1

003 inherited from w_main`cb_1

004 **/

005 //Referencing a member function in the ancestor. The following

006 //statements achieve identical results.

007 w_main`cb_1::uf_settext()

008 w_main.cb_1.uf_settext()

009 w_main.cb_1.FUNCTION uf_settext()

17 MARCH, 1998 POWERSCRIPT WHITE PAPER

 1996 AUSTIN SOFTWARE FOUNDRY10

010 SUPER::uf_settext()

011 //SUPER.uf_settext() (this statement does not compile)

012 //Referencing a member event in the ancestor. The following

013 //statements achieve identical results.

014 w_main`cb_1::TriggerEvent("clicked")

015 w_main.cb_1.TriggerEvent("clicked")

016 w_main.cb_1.EVENT clicked ()

017 SUPER::TriggerEvent("clicked")

018 //SUPER.TriggerEvent("clicked")(this statement does not compile)

019 CALL w_main`cb_1::clicked

020 //Referencing a member attribute in the ancestor. The following

021 //statements achieve identical results.

022 string ls_text

023 //ls_text = w_main`cb_1::Text (this statement does not compile)

024 ls_text = w_main.cb_1.Text

025 //ls_text = SUPER::Text (this statement does not compile)

026 //ls_text = SUPER.Text (this statement does not compile)

• Listing 9. PowerScript navigation operators .

It’s important to notice that the only consistent way to reference members of objects is through
dot notation as in lines 008, 009, 016, 017, 026.

Expressions

An expression is made up of a combination of one or more literals, variables, operators,
pronouns and functions or events. An example of an expression is counter + 1. PowerBuilder
will evaluate this expression and add 1 to the value stored in the variable location named
counter. They can occur in PowerBuilder in many places: assignment statements (counter
= counter +1), boolean expressions in IF...THEN statements, limits of FOR...NEXT and
DO...WHILE loops, parameters of functions or events, DataWindow column validations, etc. The
important concept beyond the syntax of expressions is that wherever an expression is located, it
is evaluated and produces a value. The value is then used based on the context of the
expression. In an assignment statement, the value of the expression is assigned to a variable. In
an IF...THEN statement the value is used to determine how to execute the IF...THEN statement.
This characteristic that an expression produces a value will be important when I discuss
assignment statements below. Beyond that, expressions in PowerScript are similar to
expression in C, C++, Pascal, etc. and are relatively straightforward.

Command Statements

PowerScript provides four categories of command statements: assignment, object
management, control and SQL statements. I will discuss the assignment statement below. SQL
statements are largely beyond the scope of this book and I presume you are familiar with
Structured Query Language. Control statements can be further broken down into three
categories of their own: jump, choice, and loop statements. Jump statements include CALL

POWERSCRIPT WHITE PAPER 17 MARCH, 1998

 1996 AUSTIN SOFTWARE FOUNDRY 11

and GOTO and are discouraged in both structured (or procedural) and object-oriented
programming styles. Choice statements include the forms of IF...THEN and CHOOSE...CASE
statements. Loop statements include FOR...NEXT and DO...WHILE statements. These are
standard implementations and should be familiar to you from other programming languages.
One note about choice statements that you should observe as you are expanding your use of
object-oriented programming is that there should be fewer and fewer of them in your code as
you learn to take advantage of polymorphism. This is one of the primary characteristics of
polymorphism. It is a mechanism built into an object-oriented language for automatically making
“choices” among alternate forms of operations, so you don’t have to do it within your scripts. If
you find yourself programming extensive IF..THEN or CHOOSE...CASE statements to
determine the type of an object you want to operate on, this is a sure sign that you should revisit
your design and that it is not very object-oriented.

Finally there are the object management statements CREATE and DESTROY. The CREATE
statement allocates memory for, and creates in that memory space, an instance of a class
(n_book below). The CREATE statement also returns a reference to that spot in memory, which
you must capture in a variable (lnv_book below) if you want to reference that instance of the
class (or object) later in a script. These references are the topic a future publication. There are
two forms of the CREATE statement. The first only requires that you supply the class name as a
literal that you want used to define and allocate the memory space being created. An example is:

001 n_book lnv_book

002 lnv_book = CREATE n_book

• Listing 10. PowerScript object creation .

The second allows you to supply the class as a string variable at runtime. For example:

001 string ls_classname

002 nonvisualobject lnv_objectreference

003 ls_classname = “n_book”

004 lnv_objectreference = CREATE using ls_classname

• Listing 11. PowerScript object creation using a variable .

The DESTROY statement releases the memory allocated by the CREATE statement.
PowerBuilder does very little automatic garbage collection for objects. If you CREATE an object,
you should use the reference you obtained to destroy it when you no longer need it. In a couple
of situations, even if you didn’t create an object you must destroy it if you used it. The primary
examples are the DataWindow DWObject and the OLEObject. Once you obtain a reference to
either one of these, even though they were created by PowerBuilder, you must manually destroy
them. The act of obtaining a reference causes PowerBuilder to override its automatic deletion of
these objects.

17 MARCH, 1998 POWERSCRIPT WHITE PAPER

 1996 AUSTIN SOFTWARE FOUNDRY12

001 DESTROY lnv_book

002 DESTROY lnv_objectreference

• Listing 12. PowerScript object destruction .

Once again, a thorough discussion of these issues would require a dedicated paper of their own.

Functions and Events

Even if you are new to PowerBuilder, you are very likely familiar with common syntax for
functions, and their cousins, the subroutines—such constructs appear in many languages. In
Pascal, for instance, a subroutine is a chunk of code that you can start from anywhere in your
program (with the right scope). You can send it a set of parameters to operate with if needed. It
performs the operation and passes control back to the calling code, returning no value. A
function in Pascal, on the other hand, does nearly the same thing, but always returns a value. C
does not have the distinction between functions and subroutines; in C, these flexible blocks of
code are always called functions, whether they return values or not.

The terminology is a bit different in PowerBuilder. A function in PowerBuilder is a block of code
that you call in much the same way as Pascal or C; you send it a set of one or more parameters,
it performs its function, and returns control back to the code that called it. PowerBuilder functions
may or may not return values. A subroutine in PowerBuilder is really just a function without a
return value.

PowerBuilder also adds another way of executing code that's not in the immediate script—
through an event. One key difference between events and functions prior to PowerBuilder 5.0 is
that events have not taken parameters and have not returned values, but the more important
difference is that they operate asynchronously. That is, when you call a function in a script,
control returns to your script only after the function has completed its tasks. When you post an
event from a script, though, control returns to your script immediately, and the code associated
with the event gets executed at some unspecified time in the future. Generally, when choosing
between the two, you base your decision primarily on whether the message needs to be
executed immediately, whether it needs parameters to execute, and whether the caller requires
a return value.

Unfortunately, one of the most controversial debates in PowerBuilder programming circles is
“When should I use a function or an event?”. My observation of actual usage suggests that
programmers are making this choice based on convenience rather than on the requirements of
their designs. It is easier, in the PowerBuilder painters, to override an event from an ancestor
class than to override a function inherited from the same ancestor. Additionally, it is easier in
PowerScript to trigger an event than to call a function. Triggering an event is not evaluated by the
compiler so the programmer can afford to be sloppy. What most PowerBuilder programmers
don’t realize is that by relying on this characteristic of events they are bypassing the typing
mechanism in PowerBuilder, which we’ll discuss shortly. Calling a function on the other hand is
evaluated by the compiler and often requires significant design discipline to accomplish the
same effect as triggering an event that may or may not exist at runtime. This is because the
PowerBuilder compiler is checking the type of object that the function is being called in, and
forcing the programmer to ensure that the function actually exists in the object in the correct
format. These tradeoffs have huge performance implications, as well as long term object
reusability implications, which we’ll cover from different perspectives throughout the rest of the
book. My personal guideline is still that an event is asynchronous, takes no parameters and
returns no value. An event is a “stimulus” or signal sent from a user, operating system, or other

POWERSCRIPT WHITE PAPER 17 MARCH, 1998

 1996 AUSTIN SOFTWARE FOUNDRY 13

application to notify the system an “event” has occurred and it should proceed accordingly. No
other information is required. A function is synchronous, accepts parameters, and returns a
value. It is the primary method for communication between objects within an application and is
used to implement the operations of these objects. It is the mechanism used by objects to pass
information among themselves.

Subprograms

Another major element of any programming language is the subprogram. These go by many
names: procedures, functions, subroutines, methods, operations, events, etc. They all have
three common characteristics. They contain data declarations, executable statements, and can
be invoked repeatedly from different parts of a program. When a subprogram is called it is
typically passed a sequence of values called parameters. PowerScript contains two flavors of
subprograms, events and functions, which we introduced in the previous section. Subprograms
in PowerBuilder, or any language for that matter, should be limited to 40-50 lines of executable
statements and perform a single well defined task. A subprogram to identify and parse a
sentence and divide it into a number of text strings (words) is a good example.

Modules

Subprograms are a language structure used to group logically related statements together and
to package them so they can be used again and again throughout a program. Modules are used
in modern programming languages to group data structures and subprograms, or possibly other
modules. Once again, practical guidelines for modules suggest that they shouldn’t contain more
than 40-50 subprograms, or other modules, and should perform a single, well defined task. A
spell-checking module in a word processor is a good example. PowerBuilder provides two
constructs for creating modules - classes and PowerBuilder libraries (.PBLs).

Modules provide a number of advantages over more traditional means of organizing large
systems. First, data and subprograms can be encapsulated inside of a module and access can
be controlled through a well defined public interface to the module. These interfaces can even
be checked at compile time to prevent errors and misunderstandings between modules.
Second, the process of encapsulation can hide the internal details of a module from users of the
module. When internal details change, this change can be isolated so it doesn’t affect the user
of the module’s public interface. Third, as long as the public interface to a module remains
unchanged they can be modified, recompiled and/or replaced without recompiling the entire
application.

One of the largest problems with modules is deciding what goes in them, and what the public
interface should look like. This is where object-oriented analysis, design and programming come
to the rescue. The premise of object-oriented development is that a module should be created
for any real or abstract “object” that can be represented by a set of data and operations on that
data. A library of these modules should represent a subsystem or category of behavior that all
included modules (objects) contribute to and participate in. I have rarely seen a PowerBuilder
application that takes good advantage of PowerBuilder libraries as replaceable modules. And
surprisingly to me, I still see too many PowerBuilder applications that don’t make good use of
classes as independent, reusable modules. Read on and maybe together we can fix that!

Assignment

Assignment statements appear to be relatively simple and are of the form variable=expression.
They are actually quite complicated and it is extremely important to understand exactly what they

17 MARCH, 1998 POWERSCRIPT WHITE PAPER

 1996 AUSTIN SOFTWARE FOUNDRY14

are doing in order to take full advantage of the object-oriented features of PowerScript. The
variable in the assignment statement can be of any valid type in PowerScript, as long as the
expression evaluates to a value of that type or a compatible type. This is based on our earlier
discussions of variables and expressions, and the characteristic that expressions are evaluated
and result in a single value. The assignment statement (=) causes the execution of three
separate tasks, in this order: compute the value of the expression on the right-hand side of the
statement, compute the address of the variable on the left hand side of the statement, copy the
value from the right-hand side into the memory located at the address specified by the left-hand
side. This description should begin to shed some light on the following assignment:

001 lnv_objectreference = THIS

• Listing 13. PowerScript assignment statements .

The THIS pronoun is actually an expression that PowerBuilder has to evaluate and return a
value for, as we discussed earlier. The value in this case is actually an address to the location in
memory of the object itself. PowerBuilder then copies that address into the variable
lnv_objectreference. The address held in the variable lnv_objectreference is now the same as
the address of THIS.

PowerScript also includes a number of assignment shortcuts. These include ++, --, +=, -=, *=, /=
and ^=. An assignment shortcut allows you to replace assignment statements like:

001 counter = counter * 10

002 row = row + 1

• Listing 14. PowerScript variable assignments .

with ones like:

001 counter *= 10

002 row++

• Listing 15. PowerScript assignment shortcuts .

Type Checking

The previous discussions of variables, expressions and assignment statements are critical to
understanding type checking. In traditional programming languages type checking has been
something that programmers didn’t think about too much. The languages provided a relatively
small number of data types, and as long as the program didn’t try to assign a value to a variable
of an incompatible type everything was fine. Since there were a small number of types to check
there wasn’t much opportunity for confusion. Object-oriented languages now allow developers to
define an infinite number of user defined data types (classes). Some of those data type are
subtypes of other types and some assignments may be legal in one context but not
another...ouch! Type checking has now become a much more important issue.

The three step discussion of assignment statements will give us a good foundation for exploring
the issue of type checking. Type checking is a check by the compiler or runtime environment
that the type of an expression (the right-hand side of an assignment) is compatible with the type

POWERSCRIPT WHITE PAPER 17 MARCH, 1998

 1996 AUSTIN SOFTWARE FOUNDRY 15

of the target variable (the left-hand side of an assignment). This also includes the assignment of
a variable (right-hand side) to a function argument (left-hand side) in a function call. There are
three approaches to type checking that a language can take.

The first approach is for the compiler to do nothing. In this case it is the programmer’s
responsibility to ensure that an assignment or function call will be meaningful at runtime. This is
often referred to as weak typing and is the approach taken by Smalltalk. This approach makes
the job of writing programs easier, but makes it much more difficult to find bugs and to ensure
the reliability of a program. Run time errors that are found by users can be expensive and
sometimes dangerous.

The second approach is to implicitly convert the value of an expression (right-hand side) in an
assignment to the type of required by the left-hand side. This approach is almost never
employed universally by a language, but on a limited basis where there is extremely high
reliability that the conversion is valid. Otherwise, this approach would lead to a false sense of
security by programmers, and to many of the problems with weak typing.

The third approach is for the compiler to refuse to execute, or even compile, an assignment if
the types on both sides do not match or to allow a function call if the function doesn’t exist in the
target object. Remember that an object is just a user defined type. The compiler can check the
“type” of an object to see if its definition (class) includes a function that matches the one being
called. This is often referred to as strong typing. This approach results in highly reliable
programs, elimination of obscure bugs, and easier integration of modules in large projects. The
tradeoff is that this approach does require more programming effort to define and utilize an
appropriate set of types. As a compromise for certain situation, most strongly typed languages
provide mechanisms to bypass type checking when needed. PowerScript is a strongly type
language, with mechanisms for bypassing type checking in certain circumstances, which we’ll
cover in the next section. Bypassing the type checking within PowerBuilder is not something that
should be done lightly, or extensively throughout an application. The fundamental rule is that it
should only be done in the context of a complete design, and not just for convenience in a
particular programming situation.

Fundamental PowerScript Concepts
As I pointed out before, in object-oriented languages like PowerScript it’s critical to understand
how data can be structured before beginning to learn methods for manipulating that data. In the
previous section I defined the basic language structures available in PowerScript and expanded
on some of them that will be critical for our use of object-orientation in PowerScript. Now we’ll
use that introduction to dig even deeper into some key PowerScript concepts for structuring and
then manipulating data.

Data Types

There are five categories of data in PowerScript as I discussed earlier: literals, variables,
constants, enumerations and composites. Data in each of these data categories can take on a
variety of data types. This variety of available data types can be broken down into four data type
categories that do bear some relationships to each other as described in Figure 1.

17 MARCH, 1998 POWERSCRIPT WHITE PAPER

 1996 AUSTIN SOFTWARE FOUNDRY16

any
(from Datatypes)

Enumerated Standard Class

• Figure 1. PowerBuilder Data Types.

Figure 1 is a conceptual representation of how the four data type categories are related to each
other, not an actual physical representation of how they are implemented with PowerBuilder. In
some object-oriented languages like Eiffel this is actually how the data types in the language are
implemented. This conceptual representation will be extremely helpful to keep in mind as we
discuss data types throughout the rest of the book.

Any Type

The Any type can only be used to for variables, enumerations, and composites. They cannot be
used as literals, or constants. A variable whose type is Any takes the data type of the value
assigned to it. Any variables can hold data values of enumerated data types, standard data
types, class data types, and composite data types. This is why I’ve described the relationship
between Any and the other data types like I have in Figure 1. Any variables are declared and
used just like other variables. Each element of an array of Any variables can have a different
data type. To determine what type of data is in an Any variable you can use the ClassName()
and TypeOf() functions, and to assign the contents of an Any variable to another variable you
must make sure the assignment is valid. Similarly, operations can be performed on the Any
variable only if they are valid for the data type of the value contained in the Any variable. If not,
you will get a runtime error which can be extremely difficult to track down. This, and the fact that
Any variables are expensive to evaluate at runtime, are the two main reasons to limit your use of
Any variables as much as possible.

Unfortunately, Powersoft has placed certain restrictions on the use of Any variables. The basic
rule is that you can store data of any type in an Any variable, but to use it you must assign that
value back to a variable of the correct data type. For example if an Any variable is a structure,
you must assign the value to a structure of the appropriate type before you can access the
members of the structure. We will explore these restrictions, and the use of Any variables,
further in a future publication where we will have adequate space to discuss references.

Enumerated Types

Native data types are those that are built directly into a language itself, as opposed to those that
are included with the language in standard or add-on libraries. PowerBuilder comes with a long
list of enumerated data types defined as native types within the language. Unlike C++, where
you can define your own enumerated data types, PowerBuilder does not allow you to create new
enumerated types. You can however declare variables of any of the native enumerated types. A
few examples of the native enumerated types are:

POWERSCRIPT WHITE PAPER 17 MARCH, 1998

 1996 AUSTIN SOFTWARE FOUNDRY 17

001 alignment = {center! justify! left! right!}

002 arrangeopen = {cascaded! layered! original!}

003 borderstyle = {stylebox! stylelowered! styleraised!

styleshadowbox!}

004 dwbuffer = {delete! filter! primary!}

005 exceptionaction = {exceptionfail! exceptionignore! exceptionretry!

exceptionsubstituereturnvalue!}

006 windowstate = {mazimized!, minimized! normal!

• Listing 16. PowerScript enumerated type examples .

An example of declaring and using an enumerated variable is:

001 windowstate le_windowstate

002 le_windowstate = THIS.windowstate

003 CHOOSE CASE le_windowstate

004 CASE Maximized!

005 MessageBox("Window Message", "Maximized!")

006 CASE ELSE

007 MessageBox("Window Message", "Unkown Error")

008 END CHOOSE

• Listing 17. Using enumerated types .

Standard Types

The other native data types in PowerBuilder are often called the standard data types. These are
the data representation choices the language offers you of its own accord for storing the data
values used in your programs. Each standard data type consist of storage requirements, valid
value ranges, and a standard set of operations that can be performed on them. The standard
types are used to define your own literals, variables, constants and data members of
composites. PowerBuilder provides several standard data types for you to work with, each with
its own properties and purposes. In PowerBuilder, these include Boolean, Real, Double,
Integer, Long, String, Blob, Date, Decimal, UnsignedInteger, Character, DateTime, Time,
and UnsignedLong, most of which you are probably familiar with. It also includes arrays of any
of these, since arrays are really just groups of data items of the same type.

Class Types

In PowerBuilder, as in C++, Smalltalk, Eiffel, and other object-oriented languages, you are not
restricted to using only the native data types in your code. You can also create your own data
types according to your own needs and specifications. Once defined, you can use these data
types in your code just as you would any of the native data types—with some differences. These
data types are defined by a class definition and are referred to as objects at runtime. Variables
declared of one of these class data types are what I’ve been referring to as references because
the value in the variable is simply an address, or reference, to the location of the object in

17 MARCH, 1998 POWERSCRIPT WHITE PAPER

 1996 AUSTIN SOFTWARE FOUNDRY18

memory. The variable does not actually contain the object itself. This is part of the topic of the
section on declarations, later in this paper. Powersoft has provided you with a basic set of class
data types in its System Class Library, which we’ll explore at the end of this paper and then
further throughout the book. Examples include Window, CommandButton, DataWindow, Menu
and Transaction.

Composite Types

Composite types include structures, arrays, strings and objects. Composite types are
constructed from enumerated, standard and class type variables. Objects are the most powerful
kind of composite type, and since I’ll be focusing on them throughout the rest of the book the
discussion here will be limited.

Structures

As described in the section on declarations, PowerBuilder allows you to create your own data
structures. These are similar to records in Pascal or COBOL. The data items within a structure
are often referred to as members or field. Structures give you the flexibility to customize your
data representations to fit them to your needs. Using them correctly, though, requires some
understanding of how PowerBuilder represents your data in memory.

When you declare a simple data item, such as an Integer to hold a loop index, PowerBuilder
allocates the necessary memory to hold that data item. You can count on this space being big
enough to hold a value between -32,768 and 32,767. It might be larger, but in the interests of
portability, you shouldn't make any assumptions about it. Similarly, when you declare a Long,
PowerBuilder sets aside the amount of space in memory that it needs to hold a signed 32-bit
whole number—that is, a value between -2,147,483,648 and 2,143,483,647. See Figure 2.

• Figure 2. Statements to declare an integer and a long variable, and the memory chunks that
PowerBuilder allocates to hold those variables.

When you declare a data structure, though, things are more complicated. First, you must tell
PowerBuilder what your data structure looks like. A structure member can be a variable,
enumeration, or composite. As shown in Figure 3, you can use any of the enumerated, standard
or class data types as elements in your structure.

POWERSCRIPT WHITE PAPER 17 MARCH, 1998

 1996 AUSTIN SOFTWARE FOUNDRY 19

• Figure 3. Selecting the types of the data structure members in the structure painter.

When you have finished defining what members go into your data structure, you leave the
Structure Painter. On the way out, PowerBuilder prompts you for a name under which to save
your work. The name you give becomes a new type name available in your application.

There is another step. In order to put data in a structure of this shape, you now have to declare a
structure having your new type. How you do this depends on where you need it, just as it does
for any other variable. If you need to access it from everywhere in your application, you can
create a global structure. To do this, go to the Declare | Global Variables... menu item from the
Window, Menu, or User Object painters. You get a list box like the one in Figure 4.

17 MARCH, 1998 POWERSCRIPT WHITE PAPER

 1996 AUSTIN SOFTWARE FOUNDRY20

• Figure 4. Declaring global variables of native data types and of user-defined data types.

As the figure shows, you enter a declaration for the global structure exactly as you would enter a
declaration of an Integer or Long. At this time, PowerBuilder allocates the space in memory to
hold your structure. See Figure 5.

• Figure 5. Once you have declared the structure, PowerBuilder allocates memory to hold it.

If you need only local access to a structure, you declare it in the necessary script just as you
would an Integer or String variable. When the script ends, the structure vanishes, along with all
the other local data items in the script. When the script runs again, PowerBuilder creates new
instances of all the local variables.

Data structures offer you a convenient way to organize groups of variables that you often need to
reference together. You can assign to a single one of their elements using the PowerBuilder dot
notation, or to an entire structure, as shown in Listing 5-2.

001 str_employee gsCurEmployee

002 str_employee lsTemp

003 gsCurEmployee.LastName=as_NewName

004 lsTemp = gsCurEmployee

• Listing 18. Using data structures.

Structures are one of those language elements that Powersoft included in PowerBuilder to
support a particular style of programming. Later in this Paper I’ll make the case that

POWERSCRIPT WHITE PAPER 17 MARCH, 1998

 1996 AUSTIN SOFTWARE FOUNDRY 21

NonVisualObjects give you all of the features of structures, plus more, so structures are largely
unnecessary in an object-oriented programming style.

Arrays and Strings

An array is a record (or structure) whose members are all of the identical type. Additionally these
members are not named as in a structure, but indexed and referred to by a number representing
position within the array. Because all of the members are identical, and indexing makes
accessing an array very efficient, it is relatively easy to search through arrays and reorganize
their order. Suppose you declare an array of Integers with the following statement:

001 Integer MonthlyRates[12]

• Listing 19. Declaring an array .

Now you have a dozen integers, one right after the other, sitting in memory ready to be filled.
Now suppose your script has this bit of code in it:

001 RateIndex = 17

.

.

.

002 MonthlyRates[RateIndex] = 500

• Listing 20. Using an array index .

The C programmers are probably feeling alarmed at this point. If you created this code fragment
in C, you would have just run off the end of an array, and very likely overwritten some other part
of data with the assignment. But PowerBuilder handles this differently. If you coded this in
PowerScript, you would now have an array of 17 elements, the last of which contains the
number 500. This feature offers some clear advantages, for those times when you really don't
know at design time how long an array will need to be. But it also has some pitfalls in terms of
efficiency and performance.

Strings behave in much the same way and are basically just arrays of characters. The following
two variables are identical, except that lc_string[] is harder to manipulate than ls_string.

001 char lc_string[] = {'s','t','r','i','n','g'}

002 string ls_string = "string"

• Listing 21. Character arrays compared to strings .

 PowerBuilder provides the underlying manipulation of character arrays (strings) automatically for
you, which makes strings much easier to use than character arrays. For example, if you declare

17 MARCH, 1998 POWERSCRIPT WHITE PAPER

 1996 AUSTIN SOFTWARE FOUNDRY22

two strings of fixed length and then concatenate them both into one of them, PowerBuilder will
expand the target string to hold the result for you. The limitation here is that strings can hold no
more than 32,000 characters.

Attributes (or Properties)Attributes (or Properties)

In most of the early programming languages such as Basic and FORTRAN, you could access all
of your variables from anywhere in your program, simply by referring to them. In some
languages, you could even create new variables simply by using their names—if the compiler
didn't recognize an identifier, it assumed it was a reference to a new variable, and assigned it a
type based on the first character of the name or the first value assigned to it. Clearly this made
perfect typing skills an important asset.

Aside from the problems of inadvertently created variables, universal access to all variables from
anywhere in the program generated its own problems. Particularly in very large applications or
those maintained by several people, the chances were high that programmers would reuse
variables that were already doing something else. This was one of the big motivations for the
development of subprograms, modules and subsequently information hiding techniques, as
discussed elsewhere. Variables contained within a module, particularly a class module, are
generally referred to in object-oriented programming languages as attributes. In its infinite
wisdom, Microsoft has chosen to popularize a new term for the same concept - properties. I’ll
use the more standard term attribute throughout this book, but you can substitute the term
property as Powersoft has in PowerBuilder 5.0. In PowerBuilder, you can restrict the visibility of
variables declared within modules (attributes or properties) so that only the parts of your
application that really need to know about them can access them. This section describes how,
once you’ve declared attributes, you can control the scope and access to those attributes in your
PowerBuilder applications.

You must declare your variables before you can access them. This is straightforward and
obvious when you are using your basic native data types, but can get a bit more complicated
when you begin to create your own data types. This section discusses declaration issues, and
explains the distinction between declarations and definitions, a common source of errors.

Declarations

Before you can access a variable, you must declare it. That sounds reasonable enough. In a
simple script with a For loop, you might define a variable to act as an index with the statement:

001 Integer index

• Listing 22. Simple variable declaration .

Thereafter, you can use that index variable anywhere in the script.

But when you create your own data types, things get a bit more involved. For example, suppose
you were creating a payroll application. Such an application needs to keep track of information
about employees, including the employee ID number, name, address, and birthdate of each
employee. Rather than creating separate variables for each of these items, it makes more sense
to create a structure—a grouping of these different but related data items that you can then use
to refer to them all together. To do this, you would create a structure, perhaps called
str_employee (there is a button on the Power Bar to create structures, in case you've never done

POWERSCRIPT WHITE PAPER 17 MARCH, 1998

 1996 AUSTIN SOFTWARE FOUNDRY 23

it). Within that structure, you would declare strings for the ID, name, and address, and a date
item for the employee's birthdate. This process is known as defining the structure. Once you
have done that, you can use the structure identifier (str_employee) in the same way you use the
other data type identifiers such as Boolean or Integer.

It's important to keep in mind the difference between definitions and declarations. The definition
of a data item is not a declaration of it. The definition is simply where you describe what the item
looks like. In the Structure Painter, you define the layout of your structure. When you want to use
a structure having that layout, you declare a variable to hold an address to an instance of it. Until
you do so, you can't use the structure. This is parallel to how you use native data types; until you
declare a String ls_name, you can't use it anywhere. But in that case, the data type is already
declared for you. When you are creating your own data types, it's easy to forget that you have to
go through two steps, especially when you're new to the process. As you get accustomed to
creating your own data types, it becomes second nature, but until then, it is the source of
annoying mistakes for most beginners. Another source of confusion stems from the fact that,
though they look a bit alike (especially if you come from a C++ background), structures do not
necessarily behave exactly like instances of classes.

The terminology certainly contributes to the confusion. To begin with, the two words declare and
define are quite similar. Furthermore, the usage has wrinkles of its own. For instance, when you
are in the act of defining a structure, you declare its elements. Listing 1shows a group of
declarations.

001 Integer Index

002 String Name, Address, State = "OH"

003 str_employee CurEmployee

• Listing 23. Sample variable declarations. The third declaration declares an instance of a previously
defined structure.

Scope

The scope of your variables reflects how far they can be seen within your application. The
earliest languages had only one type of scope: global. PowerBuilder offers you a choice of four:
local, shared, global, and instance. Additionally, when PowerBuilder searches for a variable
name it searches in exactly that order.

Global Scope

Global variables, for instance, are the most visible. They can be seen, and therefore used and
changed, in any script in your application. No matter where you are coding in your application, if
you have any global variables, you can use them there. Global variables can be constants,
variables, enumerations, or composites. They can contain data values, or references to objects.
In an object-oriented programming style the only use for global variables is for references to
objects.

PowerBuilder offers five default global object references, for the Transaction object (SQLCA is
the variable name), the DynamicDescriptionArea (SQLCA is the variable name), the
DynamicStagingArea (SQLSA is the variable name), the Error object (ERROR is the variable
name), and the Message object (MESSAGE is the variable name). These are appropriately

17 MARCH, 1998 POWERSCRIPT WHITE PAPER

 1996 AUSTIN SOFTWARE FOUNDRY24

global to the application, because PowerBuilder needs to make them available to all of your
application in a consistent way, but it can't predict where or how you will need them. If you need
to create others global object references, you define them in any of the class painters (Window,
Menu, UserObject, Structure, Application), then declare them from the Declare | Global
Variables menu item within any of the painters that offer it.

As you have probably heard a hundred times, it's highly preferable to avoid global variables and
functions. The only exception is global object references. Otherwise, they decrease reusability
and increase the tightness of the coupling between elements of your application, and they reside
in memory during the entire time your application runs, rather than only when they're needed.

If you use sound analysis and design techniques, you will very never require global data
variables. To get rid of the ones you already have, here are some useful tips. If you already have
global structures in your application, it's an easy matter to create a custom class in the user
object painter and move the attributes of the structure to the attributes of the custom class. Now
you can inherit from the new custom class, and then extend or override it as necessary, instead
of having to create a new structure to make changes.

If you have global variables, look for ways you can make them attributes of a custom class
instead—without making overly contrived connections between them.

Instance Scope

An instance variable is associated with a particular object, and is only accessible from within the
event scripts and functions that go with that object unless you allow otherwise. They are created
when the object is created and destroyed when the object is destroyed. If you have more than
one instance of a class, you will also have separate copies of the instance variables for each
instance of the class.

You create instance variables from the Declare | Instance Variables... menu item from the
painter of the object with which you want to associate them—the Menu, Window, or User Object
painters.

Shared Scope

Like their cousins the instance variables, shared variables are associated with objects. The
difference is that while an instance variable is associated with a particular instance of an object,
shared variables persist across all instances of that object. The are called class variables in
Smalltalk and other object-oriented languages. When you instantiate a class in your application
that has a shared variable, that variable gets created, and initialized if you so specify. When
another instance of that same object gets created, though, PowerBuilder does not create a new
instance of the shared variable. Both instances of the object reference, and modify, the same
copy.

To create shared variables, select the Declare | Shared Variables... menu item from the
painters of those objects that support them (Window, Menu, UserObject and Application).

POWERSCRIPT WHITE PAPER 17 MARCH, 1998

 1996 AUSTIN SOFTWARE FOUNDRY 25

Local Scope

This is the most restrictive scope. Variables declared inside a script have local scope, which
means that they can only be seen and used within that script. When the script terminates, they
cease to exist. They are appropriate for looping indexes, placeholders, and other temporary
elements that do not need to persist beyond the execution of the current script.

Access Rights

Access rights are sometimes confused with scope, but is actually a means of qualifying scope
for instance variables. The careful application of access rights is an important tool for an object
oriented implementation of your design. You apply access rights to both the variables and
functions of an object (its attributes and methods).

Public

Public access is the widest access right, as its name suggests. You'll seldom use public access
for the attributes of an object; this would permit any variable or script within its scope access and
change the values of those attributes. Instead, a more common object-oriented solution is to
provide public scope methods (called public functions in PowerBuilder) that provide services to
let other objects reference and change the attributes. This promotes encapsulation: if you need
to change the structure of the data within the object, you can do it with less chance of affecting
other parts of your application, as long as the interface to the service functions remains the
same.

Public access is the default for your methods and objects. In other words, if you don't explicitly
define them to be private or protected, PowerBuilder makes them public. Public access rights for
instance variables violates the principle of encapsulation and should never be allowed. I’ll
expand on this guideline later in the section of the programming styles supported in
PowerBuilder.

Private

This is the most restrictive access type. Private functions in your objects are those that only the
object itself ever needs to execute. If no other object will ever need to access the function (that
is, if no other object ever needs to send this type of message to this object), then make the
function private.

Many of the attributes in your objects will likely be private, too, except those that need to also be
available to descendants. For this purpose, PowerBuilder offers the Protected access.

Protected

Variables and functions with protected access are only visible to the object itself and its
descendants, and so is only meaningful for objects from which other objects are inherited. Any
attribute or method that the object should pass on to its descendants should therefore be
declared Protected. Good object-oriented designs make extensive use of protected access and
should generally be your default access rights for instance variables.

17 MARCH, 1998 POWERSCRIPT WHITE PAPER

 1996 AUSTIN SOFTWARE FOUNDRY26

Messages and MethodsMessages and Methods

Having made a fairly clear-cut distinction between functions and events earlier, I must now point
out that the picture is not so clear-cut in PowerBuilder 5.0. It is now possible to call events—to
synchronously execute the code associated with an event - as well as pass it parameters directly
and obtain return values. You can also now post functions—direct the system to asynchronously
execute a function - as well as postpone type checking until runtime. For all outward
appearances, there is now no distinction between functions and events in PowerBuilder 5.0. This
blurring of functions and events is achieved largely with the introduction of a trio of new keyword
combinations - TRIGGER/POST, STATIC/DYNAMIC, and FUNCTION/EVENT, which we’ll
cover shortly. Other considerations, however, remain.

Functions and events permit you to implement the response to messages sent between your
classes that you discovered during analysis and design. This is an important distinction for
object-oriented programming - the difference between the message and the response. The
message is the function or event call. The response to the message is the series of instructions
executed as a result of receiving a particular event or function call. The response is either the
text of a script in PowerBuilder, the text of a stored procedure in a RDBMS like Oracle or
Sybase, or the text of an external function (written in C++ or another language callable from
PowerBuilder) and is more formally called a method in object-oriented design and programming.
Throughout the rest of the book I’ll refer to the function or event call as a message, and the
script or program that is executed in response to that message as a method. This section
describes the issues involved in sending messages and the various characteristics to consider. It
will hopefully help you make choices between functions and events as the form of the message.
The considerations for messages are the direction, access rights, name resolution, timing, and
parameters of the message. The primary considerations for methods are computational intensity
and physical location

Message Direction

If your design calls for bi-directional messages, you need a mechanism that can carry
information on both the send and the return. In earlier versions of PowerBuilder only a function
would suffice, because it was the only mechanism that provided for the formal definition of
parameters and return values. If your messages required only a single direction (i.e. a “send” or
notification), a subroutine would have been appropriate if parameters were required. An event
would have been appropriate where no data needed to be sent or returned with the message, for
example in a clicked event where the target object only needs to know that it has been clicked.

PowerBuilder 5.0 has now blurred the distinction between events and message since it allows
the definition of parameters and return values for events. The guidelines I outlined earlier in the
paper are still the ones I recommend for deciding which to use. Additionally, remember that
events are intended to be asynchronous and are posted to the application message queue to be
processed when they come to the top of the queue. A critical return value cannot be processed
by the calling object if it doesn’t know when the event will be processed. In this case, a function
is a better choice.

Message Access Rights

Message access rights is similar to the access rights I discussed earlier for instance variables. It
refers to the capability of a developer to restrict the visibility of message names outside of a
class. PUBLIC access rights makes the message name visible to all other objects.

POWERSCRIPT WHITE PAPER 17 MARCH, 1998

 1996 AUSTIN SOFTWARE FOUNDRY 27

PROTECTED access rights restrict visibility to objects of the class, and all descendants of the
class. PRIVATE access rights restrict visibility of the message name to the object itself. Only
object functions and subroutines can be assigned access rights. Events and global functions
have public access by default. If you need to restrict access to a message in order to
encapsulate an object, you must use an object function to implement the method. This is one of
the primary reason for choosing between functions and events in PowerBuilder 5.0. By definition
all events become part of an object’s public message interface. The key to a good public
message interface is that it’s easy to understand and use, and offers the minimum number of
messages necessary for the users of an object to obtain the services they need.

Message Name Resolution

When an object receives a message it has to resolve the name in order to determine which
method to implement in response to the message. There are two searches that have to be
completed to make this determination. First, the object must look through its own methods to
see if it can directly respond to the message. In PowerBuilder 5.0, like in C++, there may be
multiple methods with the same name. The only difference may be the number or type of
parameters they accept. The object must search through this list to determine which one
matches the name, number of arguments and type of arguments supplied in the message. If it
cannot find a match, it must then begin to search though its ancestor’s methods to see if it has
inherited one that it can use to respond to the message. This is, in effect, a very simple
explanation of polymorphism. The response to a message takes on the appropriate form as a
result of the object’s search for the correct method. The first search I described above is what I’ll
introduce later as operational polymorphism. The object searches it’s own “operations” to find
the one that matches the message. The second search I’ll describe later as inclusion
polymorphism since the object searches though the methods “included” in it from an ancestor.
The important distinction to note here is that objects support inclusion polymorphism for events
and functions, but only support operational polymorphism for functions. This will affect your
choice of events over functions for implementing methods, usually in favor of functions.

The other important aspect of message name resolution to be familiar with is the new syntax for
sending messages. As an example consider the traditional PowerBuilder function call in a “Save”
commandbutton on a window:

001 w_main.wf_save()

• Listing 24. Traditional PowerScript message .

This message name is checked by the compiler and resolved to ensure that the function
(wf_save) exists in the target object (w_main). In the next form of the same message the new
DYNAMIC and FUNCTION keywords are used, along with the PARENT pronoun just to make
the message really generic, to tell PowerBuilder not to resolve the message name until runtime.

002 PARENT.DYNAMIC FUNCTION wf_save()

• Listing 25. New PowerScript message syntax for functions .

The result here is that this commandbutton can be developed independently of any window
object (i.e. w_main) and this message can be compiled and will work as long as, at runtime,
there is a function called wf_save() in the parent of this button. If there is not PowerBuilder will
generate an application error at runtime and terminate the application. This raises yet another
distinction between events and functions. The following message may accomplish exactly the

17 MARCH, 1998 POWERSCRIPT WHITE PAPER

 1996 AUSTIN SOFTWARE FOUNDRY28

same result, but if the event (ue_save) is not found PowerBuilder will not generate an application
error and will simply continue the application and nothing will be “saved” because the operation
was never found or executed.

001 PARENT.DYNAMIC EVENT ue_save ()

• Listing 26. New PowerScript message syntax for events .

Message Timing

The original message sent to w_main in the previous section was a function call and its
associated method would be executed synchronously. The calling object would have waited
until the function wf_save() was completed before it could continue executing after the message
was sent. The original message above is exactly equivalent to:

001 w_main.TRIGGER STATIC FUNCTION wf_save()

• Listing 27. Controlling the timing of messages using TRIGGER .

The new TRIGGER keyword indicates that a method should be executed immediately upon
receipt of a message, and the caller will wait until control is returned. TRIGGER behaves
similarly to the traditional PowerBuilder function TriggerEvent(“eventname”). Alternatively, the
POST keyword behaves like the traditional PostEvent(“eventname”) function. It will cause an
event, or function now, to be posted to a queue to be executed asynchronously. The caller can
then continue processing without waiting for a response.

001 w_main.POST STATIC FUNCTION wf_save()

• Listing 28. Controlling the timing of messages using POST .

Message Parameters

A message may contain one or more parameters that are subsequently passed to the method
(or subprogram) that’s executed in response to the message. The method will accept and utilize
these parameters as arguments in the body of the instructions it is executing. Both events and
functions may accept parameters. Parameters are the primary way in which data and
information is passed along with a message. Traditionally events have not accepted parameters,
and based on the guidelines I’ve discussed earlier this should still be the most common use of
events.

Method Computational Intensity

Methods that contain intense computations, like scientific or financial calculations, are good
candidates for a lower level language than PowerScript. PowerBuilder allows you to call
functions written in external languages (C and C++ mainly) from within PowerBuilder. These
external functions are “wrapped” with a PowerScript message so other PowerBuilder objects
never realize that the response to a message they’ve sent is actually being processed outside of
PowerBuilder. The messages are declared as Local External Functions from within any one of

POWERSCRIPT WHITE PAPER 17 MARCH, 1998

 1996 AUSTIN SOFTWARE FOUNDRY 29

the PowerBuilder painters. The method is then written and compiled using the external
language’s development tools (i.e. the Watcom C++ compiler).

Method Location

Methods that may be shared among more than one application, system or user at the same time
may be good candidates for implementation outside of your PowerBuilder application. There are
essentially three options for locating methods outside of your application - remote PowerBuilder
objects, external objects or functions written in a language like C++ that are accessed via
Remote Procedure Calls or Object Request Brokers, stored procedures stored in your relational
database management system and executed from with PowerBuilder using the EXEC REMOTE
SQL statements. Designing distributed applications using these techniques is a very advanced,
and rapidly evolving, type of system development. I’ll discuss it briefly later in the book when we
discuss the use of “Distributed PowerBuilder”.

EncapsulationEncapsulation

Until now we have been discussing many of the lower level language specifics of PowerScript
that are present in both procedural and object-oriented languages. These next three sections on
encapsulation, inheritance and polymorphism provide the foundation for the object-oriented
features of PowerScript.

Encapsulation is the foundation of all object-oriented programming. I introduced the term module
earlier as a basic concept in all modern programming languages. Encapsulation is the process
of creating these modules by packaging, or bundling, data (shared and instance variables) and
subprograms (events and functions) with the body of a module (class definition). Once data and
subprograms have been bundled into a module, the module must be designed so that the
internal details of it are hidden from its users. This prevents them from needing to know about
these details and from being affected by changes to them. The method for designing a module
like this is to develop a “public interface” as the only way for modules to interact with each other.
The public interface is composed of public methods (events and functions) to allow users to
request services or data from the module. The result is an encapsulated module, or class.

• Figure 6. Encapsulation includes bundling and information hiding.

17 MARCH, 1998 POWERSCRIPT WHITE PAPER

 1996 AUSTIN SOFTWARE FOUNDRY30

The interface to a PowerBuilder class is actually exposed for two different purposes. The first
purpose is to provide a way for all other classes in a system to obtain services and data from a
class. This is done through public events and functions and is what I’ve referred to as the public
interface. Events are always part of a class’ public interface to the rest of the system since they
are by definition public. As discussed above, events should be used for sending an object a
signal that something has occurred in the system or environment that it should respond to.
Public functions are also accessible from outside of a class and should be used as the primary
means of gaining access to an objects internal operations that change, compute on or provide
data. A public interface can also be inherited by a class from an ancestor, which it then may
expand or restrict.

There is also another interface to a class that is available only to its descendants. This can be
thought of as the “protected interface” to the class. It is protected from use by objects who are
not members of the object’s immediate family, or inheritance hierarchy. The protected interface
to a class consists of the attributes (instance variables) and methods (functions) that are
declared with PROTECTED access rights. These protected members are inherited by
descendants and may be used directly, extended or restricted in the descendants. It is extremely
important to design the public and protected interfaces separately since they have two different
“audiences”, but to remember that they will interact with each other. This is one of the reasons
that seasoned object-oriented developers often say that analysis and design are much more
critical to sound object-oriented programming than they have been for other programming styles.

• Figure 7. Public and protected interfaces to the XXXXX class.

InheritanceInheritance

Now that I’ve introduced the idea of user defined types (classes) I can discuss inheritance in that
context, which is really what it provides for. I often find that developers who have spent a great
deal of time working with data-oriented approaches to system development have some difficulty
with inheritance because they confuse descendant objects with the concept of a subtype. A
subtype is simply a restriction on an existing type. This is a valid, and important, distinction but it
is not an appropriate criteria for inheritance. All operations that are available on a type are
available on all of its subtypes and anywhere the value of that type can be used, the value of the
subtype can be used. This is not true of a derived (inherited type). An example of a subtype
might be an integer variable called TEMPERATURE that has a valid range of integer values
from -273 to 10,000. The TEMPERATURE variable can be used in any expression where an
integer type, or any integer subtype, is valid.

A derived type, on the other hand, cannot necessarily be used in place of the type it was derived
from, or other types derived from that ancestor. The derived type inherits the set of all values
and the set of all operations from the base type, and can extend or restrict the set of values and

POWERSCRIPT WHITE PAPER 17 MARCH, 1998

 1996 AUSTIN SOFTWARE FOUNDRY 31

operations. As a result it is not always possible to substitute a derived type for a base type in an
expression. The operations being performed may not be valid on the derived type. I’ll refer to
derived types from now on as descendants.

PowerBuilder makes the use of inheritance extremely easy. All you need to do is click the Inherit
button instead of New when opening a painter to create a new Window, Menu, or UserObject
class. The reasons for using inheritance, i.e. the design of a class hierarchy, are more
complicated. There are essentially two reasons to use inheritance in PowerBuilder. First, if you
need to define a new “kind of” something that appears and behaves substantially the same as
an existing class, but may be a specialized type of the existing class, you should use inheritance.
A book is a “kind of” library item. A periodical is also a “kind of” library item and should be
inherited from the library item base class. This is often referred to as implementation inheritance.
Book and periodical are concrete implementations of the abstract concept of library item.
Second, use inheritance if you need to define a new class that includes the same public interface
as an existing class. This is often the case when creating a new “branch” of the class hierarchy.
In PowerBuilder, the Transaction and Error classes both are derived from NonVisualObject so
they both will include the standard public interface for ClassName(), TypeOf(), TriggerEvent()
and PostEvent(). They are not “kinds of” or concrete implementations of NonVisualObjects.
Transaction implements a database transaction connection and Error implements an application
or system error. They bear no relationship to each other except for the initial public interface they
inherit from NonVisualObject. This is often referred to as interface inheritance.

Polymorphism

Briefly, the concept of polymorphism is the characteristic of related objects that may have
similar behaviors, but who internally implement those behaviors in many different forms. Another
way to say this is that polymorphism is the ability of an instance of a class to assume different
types, or the ability to manipulate instances without knowing their types. Remember that the only
way to manipulate an object is through its public interface. The ability to do so without knowing
the object’s exact type means that messages sent to its interface must take on many forms
(each different form is actually a different method within the class) depending on the exact type
implemented. The result is that polymorphism shifts the responsibility for knowing the correct
response to a function call or event trigger from the client to the server. The ultimate result of this
is to reduce the overall complexity of your applications when used well!

17 MARCH, 1998 POWERSCRIPT WHITE PAPER

 1996 AUSTIN SOFTWARE FOUNDRY32

nonvisualobject
(from Abstract Classes)

n_library_item
#is_title : string = " "
-ii_period : integer = 0
-ii_checkedout_state : integer = 0

+nf_settitle()
+nf_checkin()
+nf_checkout()

n_book
n_periodical

-volume : integer = 0

+nf_setvolume()

• Figure 8. Library item class hierarchy.

Static and Dynamic Typing

The implementation and use of polymorphism is much more complicated than the concept itself.
In order to illustrate how to design classes that take advantage of polymorphism, you’ll need to
first understand the ideas of static and dynamic class data type. Remember that a class data
type is a class definition (either a PowerBuilder system class, or one you’ve created yourself) you
use to declare a new variable. The new variable then holds the address of the location in
memory where an instance of that class can be stored. An example of declaring several class
data type variables (reference variables to be discussed in a later publication) is:

001 n_library_item lnv_library_item[]

002 n_book lnv_book1, lnv_book2

003 n_periodicallnv_periodical1, lnv_periodical2

• Listing 29. Object declarations .

You’ve now got a new variable array lnv_library_item and its data type is the class
n_library_item, which is stored in one of your .PBLs. You’ve also got two other variables
lnv_book1 and lnv_book2 and they both are of the n_book type. These variables now have the
static type of n_library_item and n_book, respectively. The static type is the type the compiler
assigns to these variables when they are declared and is what it will use to check any
assignments made to these variables. Once you have declared the variables, you need to
instantiate some objects:

POWERSCRIPT WHITE PAPER 17 MARCH, 1998

 1996 AUSTIN SOFTWARE FOUNDRY 33

001 lnv_book1 = CREATE n_book

002 lnv_book2 = CREATE n_book

• Listing 30. Object creation .

Now you’ve got two objects in memory and your script can begin to manipulate those objects:

001 lnv_book1.nf_settitle(“The Design and Evolution of C++”)

002 lnv_book2.nf_settitle(“Inside the C++ Object Model”)

• Listing 31. Sending messages to objects .

The compiler checks the data type of lnv_book1 and lnv_book2 to be sure they support the
nf_settitle() operation. Since the nf_settitle operation was defined as a public function in
n_library_item, n_book includes it as part of its public interface as well and the compiler is happy
because the use of lnv_book1 and lnv_book2 was consistent with their static type - n_book. But
what would happen in the following situation where the nf_setvolume() method is only defined in
n_periodical?

001 lnv_library_item [1] = lnv_periodical1

002 lnv_library_item [2] = lnv_periodical2

...

003 FOR itemnum = 1 TO 3

004 lnv_library_item[itemnum].nf_setvolume(0)

005 NEXT

• Listing 32. Checking the static type of a message .

The compiler won’t allow the message inside the FOR...NEXT loop to be sent. The static type of
lnv_library_item does not support the nf_setvolume() operation, even though you know when
this script executes that lnv_library_item[1] actually holds lnv_periodical1 (by looking at the array
assignments before the loop) and it has the nf_setvolume() method in it and should work. This
is called the dynamic type of lnv_library_item[]. At runtime, you assigned a variable of a slightly
different but related type to lnv_library_item[] and thus changed its dynamic type as a result of
the assignment. Every class variable always has both a static (declared) and dynamic (assigned)
type. Many times they are the same, but as in previous example they may not be. The dynamic
type may even change more than once during execution of a single script! These are the kinds
of things that make sound design such a critical part of object-oriented programming. It’s very
easy to lose track of the dynamic type if you haven’t designed your program carefully.

Inclusion Polymorphism

There are two related types of polymorphism implemented in PowerBuilder. The first, inclusion
polymorphism, is based on the idea that a class “includes” all of the attributes and operations of
its ancestors, and may override or extend those features (thus “many forms”). This kind of
polymorphism has been in PowerBuilder since Version 3.0. When you send a message to a
class within a hierarchy, PowerBuilder examines that class, and everything included in it from its
ancestors, until it finds the correct method to match with the message it received. The scope of
the search is the entire class hierarchy above the class that received the message. This is

17 MARCH, 1998 POWERSCRIPT WHITE PAPER

 1996 AUSTIN SOFTWARE FOUNDRY34

considered to be a strongly typed (or “type safe”) language feature since the message is not
allowed by the compiler unless a related message exists in the hierarchy.

Operational Polymorphism

The second kind of polymorphism in PowerBuilder is new with Version 5.0. It is formally called
operational polymorphism, but is also often referred to as function name overloading or just
name overloading. Remember that the basic definition of polymorphism is that an operation on a
class can take more than one form. Inclusion polymorphism is the classic implementation of this
concept in Eiffel, Smalltalk and C++ and is constrained by the inheritance hierarchy. Operational
polymorphism is a language feature that provides alternate method forms within a single class.
That is, it is constrained by the class not the hierarchy the class is derived from. Consider the
following example:

001 lnv_libraryitem[1].nf_checkout(ls_borrowerid, ls_itemid, li_copy)

002 lnv_libraryitem[2].nf_checkout(ls_borrowerid, ls_itemid)

• Listing 33. Overloading a message name .

There are two forms of the nf_checkout() message. The first form requires a borrower
identification, an item identification and a copy number. The second only requires the borrower
and item identification. They both have the same message name, nf_checkout(), but they take
different parameters and respond to the message with slightly different methods. Both forms of
the method are defined within the same class - n_libraryitem. The best way to remember the
difference between inclusion and operational polymorphism is to remember that the scope of
resolution for inclusion polymorphism is the class hierarchy and the scope of the resolution for
operational polymorphism is a single class.

System Class Library
Designing a general library of classes is a difficult undertaking. It’s much more difficult than
designing an application, since an application must solve a single problem and a general library
of classes must be able to solve an entire range of problems. A good library offers one, or a
small number, of consistent style that can be applied to that range of problems using the library.
This helps make learning the library easier, and makes it clearer how to apply the library in
various situations. Learning the PowerBuilder system class library is an essential part of
becoming an object-oriented PowerBuilder programmer. It is also an excellent way to learn
some of the basic techniques you’ll need to create your own class libraries.

Most pure object-oriented languages come with what is called a system class library. It’s a library
of classes that are used not only by application developers to create new libraries and
applications, but internally by the language and development environment themselves.
PowerBuilder comes with a well-developed and carefully evolved library of classes, all of which
descend from the PowerObject. This system class library is designed to support the
development of the client portion of a client/server application. That’s the “style” of application it
supports. It supports two basic variations on that style - Single Document Interface (SDI), and
Multiple Document Interface (MDI). With the addition of add-on” libraries from third parties, or by
creating your own, you can extend the range of styles to things like Microsoft’s new Project,

POWERSCRIPT WHITE PAPER 17 MARCH, 1998

 1996 AUSTIN SOFTWARE FOUNDRY 35

Workspace and Workbook styles. My recommendation is to learn the PowerBuilder system
class library before you begin experimenting with additional styles. You can begin by viewing the
entire tree structure of the library (the system class hierarchy) from the object browser, available
through the Library Painter. Let me walk you through some of the key characteristics of the
PowerBuilder system class library.

First, it’s important to recognize that PowerBuilder supports a number of non object-oriented
application development styles (distinct from the “application styles” I talked about above). A MDI
style application can be created using any one of these development styles - procedural, object-
based or object-oriented. We’ll focus on the object-oriented approach to development in this
book. But one result of this support for the other development styles is that the class library
design, a decidedly object-oriented effort, must also address non object-oriented development.
So, in the PowerBuilder system classes only the Application, Menu, Window, UserObject,
NonVisualUserObject and control classes are true classes, in the sense that they have both
attributes and methods you as an object-oriented developer can add to. Many of the other
“classes” in the library are there in order to support these other styles of development. One other
effect of this support for non object-oriented development is that everything that goes into a
PBL, including your functions and structures, is referred to as an “object” by PowerBuilder even
though they are actually classes. For non object-oriented development the distinction between
class and object is confusing and unnecessary.

There are essentially 6 types of classes that are used in the PowerBuilder system class library:
abstract classes, concrete classes, node classes, adapter classes, proxy classes and
representation classes. The system class library begins with PowerObject, an abstract class.
Abstract classes are intended to provide a general interface to a range of possible
implementations of a common concept. Those implementations tend to be concrete classes that
implement that common concept, as I’ll discuss next. The methods of an abstract class are often
“virtual methods”. They don’t do anything until they are implemented in a concrete descendant
(through inheritance) or in an associated concrete class (through association or aggregation).
This separation of the interface in the abstract class from the implementation in a related
concrete class allows several implementations of a common concept to exist in a program.
Abstract classes typically don’t have constructors or attributes, and are not intended to be
instantiated.

graphicobject nonvisualobject

powerobject

• Figure 9. Abstract classes in the PowerBuilder system class library.

Node classes rely on ancestors for basic services and a public interface, and thus can only be
understood in relation to their ancestors. They are used mainly as a base for inheritance and as
a common ancestor for a tightly related group of classes. They may have some characteristics in
common with abstract classes but they generally provide some additional services for their
descendants and may be instantiated, unlike abstract classes. Node classes may also have
some characteristics in common with concrete classes if it is not necessary to create

17 MARCH, 1998 POWERSCRIPT WHITE PAPER

 1996 AUSTIN SOFTWARE FOUNDRY36

descendants of them to use them. You will often create either abstract or concrete node classes.
The real distinction is that a node class, whether abstract or concrete, provides a protected
interface to its descendants to allow them to refine or specialize its behavior and those
descendants are all closely related to each other and the node class in terms of their primary
functionality. Node classes also often have constructors that are essentially for instantiating the
node class or its descendants. The dragobject and drawobject classes in the PowerBuilder
system class library are examples of abstract node classes. The structure class is an example of
a concrete node class.

graphicobject

nonvisualobject

powerobject

connectobjectdatastore

dragobjectdrawobject

extobject

omcontrol

omcustomcontrolomembeddedcontrol

structurewindowobject

(Abstract Node) (Abstract Node)
(Abstract Node)

(Abstract Node)(Abstract Node)

(Abstract Node)

(Abstract Node)(Abstract Node)

(Concrete Node)
(Abstract Node)

• Figure 10. Node classes in the PowerBuilder system class library.

An adapter class (sometimes called an interface class or a wrapper class) doesn’t do much
more than “adapt” the public interface of an existing class or external application so it can be
used more easily by other classes. The adapter really just provides an alternate interface to the
existing class or external application. The primary objectives of an adapter class are to make an
existing public interface easier to use, insulate the users of a class from changes in its native
interface, or to resolve conflicts between the interfaces of two classes. In the case of an external
application the adapter class may make it appear to be an object when it really isn’t. This is one
technique for integrating procedural or legacy applications into object-oriented applications. A
good example of an adapter class is the cplusplus class in the PowerBuilder system class
library. It provides a PowerBuilder interface to C++ objects that reside in external dynamic link
libraries (.DLLs).

POWERSCRIPT WHITE PAPER 17 MARCH, 1998

 1996 AUSTIN SOFTWARE FOUNDRY 37

graphicobject
(from Abstract Classes)

nonvisualobject
(from Abstract Classes)

powerobject
(from Abstract Classes)

dragobject
(from Node Classes)

omcontrol
(from Node Classes)

omcustomcontrol
(from Node Classes)

omembeddedcontrol
(from Node Classes)

structure
(from Node Classes)

windowobject
(from Node Classes)

cplusplus datawindowchild

olecontrol olecustomcontrol

• Figure 11. Adapter classes in the PowerBuilder system class .

A proxy class (sometimes called a handle class) is one that is used to separate the
representation of an object from the interface used to manipulate it. Abstract classes and
adapter classes can sometimes function a lot like proxy classes since they also attempt to
separate an object’s interface from its implementation, but a proxy class is much more loosely
coupled to the implementation than either an abstract or adapter class. This looser coupling
allows for different representations with different memory and storage requirements to be

17 MARCH, 1998 POWERSCRIPT WHITE PAPER

 1996 AUSTIN SOFTWARE FOUNDRY38

manipulated more easily through the same proxy. The proxy contains the methods and a
reference to the representation of the object. The representation contains all of the object’s data.
Additionally, in distributed applications a proxy represents the interface to an object whose entire
physical representation resides on another computer, methods and all. The proxy is essentially a
“shadow”. The remoteobject is a good example of a proxy class in the PowerBuilder system
class library. A DataWindow control class is also an example of a proxy class, as well as being a
concrete control class.

graphicobject
(from Abstract Classes)

nonvisualobject
(from Abstract Classes)

dragobject
(from Node Classes)

windowobject
(from Node Classes)

oleobject

olestorage olestream omobject

omstorage omstream remoteobject

powerobject
(from Abstract Classes)

extobject
(from Node Classes)

datawindow

dataobject
(from Representation Classes)

dwobject

• Figure 12. Proxy classes in the PowerBuilder system class library .

A representation class is what is referenced by a proxy. For example, a DataWindow control
references a DataWindow object, where all of the data retrieved from a database server actually

POWERSCRIPT WHITE PAPER 17 MARCH, 1998

 1996 AUSTIN SOFTWARE FOUNDRY 39

resides. The only way to manipulate the information in a DataWindow object is to use the proxy -
the DataWindow control.

powerobject
(from Abstract Classes)

structure
(from Node Classes)

dataobject

environment

listviewitem

mailfiledescription

mailmessage

mailrecipient

treeviewitemconnectioninfo

• Figure 13. Representation classes in the PowerBuilder system class .

Finally, concrete classes are meant to represent some real programming construct you’ll need,
and they include all of the attributes and methods you would need to create and use objects of
that class in a program. There is often a close correlation between its public interface (to classes
outside of its family) and its implementation (use of features within itself, and inherited from
ancestors). This means that the concrete class provides a public interface to all of the features it
contains, and those are all of the features you should ever need in order to use it. Additionally, a
concrete class should be relatively independent and usable by itself. The commandbutton class
in the PowerBuilder system class library is an example of a concrete class. Most of the classes
in the PowerBuilder system class library are concrete classes. This is not normally the case in a
system class library where most classes are abstract, nodes, adapters or representations. Since
PowerBuilder is intended for use by non object-oriented programmers the system class library in
necessarily made up of a large number of concrete classes, which are “filled in” with default
attribute values and method implementations using one of the painters. This hides the use of the
system class library from developers who are not familiar with object-oriented programming.

Programming Style and Design Considerations
The basic principles of object-oriented programming are not new concepts. Good system
designers and developers have always tried to make programs as modular as possible, hide
implementation details and reuse common code whenever possible. Object-oriented languages
like PowerScript just provide more support for these principles than procedural languages, thus
making it easier to do. But just like programming in procedural languages, the time pressure and
constraints of real projects can cause some of these principles to be compromised. Don’t let it
happen to you! In this last section I’ll give you some guidelines on choosing a programming style
within PowerBuilder, and then some design and coding guidelines for using an object-oriented
style in PowerBuilder.

17 MARCH, 1998 POWERSCRIPT WHITE PAPER

 1996 AUSTIN SOFTWARE FOUNDRY40

Programming Styles Supported by PowerBuilderProgramming Styles Supported by PowerBuilder

Languages like C++ and PowerBuilder’s PowerScript are often referred to as “hybrid languages”
because they offer multiple programming styles, or programming paradigms, to their users.
Both C++ and PowerScript offer procedural, object-based and object-oriented language features
so that programmers can choose the style that most suits their needs and experience level.
There are several results that I’ve observed from this flexibility, some of which are good and
some of which are not so good. First, programmers who are familiar with a procedural style of
programming can learn those features of PowerScript quickly, and become productive with
PowerBuilder relatively quickly. Second, this range of styles provides advanced programmers
with a wealth of tools and techniques they can use to solve complex problems. Third, the
complexity inherent in a tool with this amount of flexibility results in an overall longer learning
curve than one that enforces a single approach. In other words, a programmer can begin using
PowerBuilder quickly because he can choose a style he is familiar with, but faces a relatively
long learning curve to really begin using PowerBuilder well. Fourth, good program and system
design is difficult, and as a result absolutely critical. There are so many design and
implementation choices possible in the language it takes a great deal of experience to judge
their relative merits, and some combinations of features can cause long term flexibility and
maintenance problems that a novice or even intermediate programmer could never anticipate.

The difficulties emerge because often novice or intermediate programmers aren’t completely
aware of the distinctions between the available styles, and mix them inadvertently. A program
written in one of the supported styles tends to be well behaved, but mixed paradigms can hold a
wealth of surprises and most them aren’t welcome surprises! Let’s begin this section with a
discussion of the programming styles available in PowerBuilder.

Procedural Style

In a procedural programming style data abstractions (variables, structures, etc.) and the
operations that perform on them are declared separately. The operations are ideally
implemented as modular functions or subroutines that can be reused throughout one or more
programs. These operations are largely task oriented and operate on shared, external data.
When one of them is invoked, the calling program must pass them the data structures it wants
them to operate on and then wait for the result. This programming style is the one most often
used with the Structured Analysis/Structured Design (SA/SD) software engineering methodology
I introduced earlier. On the plus side, this style is well suited to procedural languages like C,
COBOL and FORTRAN that don’t provide support for objects. It also typically requires less
analysis and design than object-oriented methods. On the minus side, it results in fewer
reusable artifacts and more monolithic system architectures than an object oriented style.

PowerBuilder supports this style of development by providing a number of language constructs
that are similar to those found in procedural languages. Global functions and variables,
structures, default public access to the properties of all PowerBuilder classes, and an extensive
library of system functions are some of the most important PowerBuilder features for this style.
The use of these features, in combination with the basic painters - window, menu, function,
structure, DataWindow, application, project and library - provide developers with a complete
development environment for creating client/server applications without an in-depth knowledge
of object-oriented design and programming.

POWERSCRIPT WHITE PAPER 17 MARCH, 1998

 1996 AUSTIN SOFTWARE FOUNDRY 41

Object Based Style

In an object-based style, data abstractions contain declarations of both data members and the
operations on those data members. This style adds a more complete focus on encapsulating
data and operations within finer grained modules than in a procedural style. The reason that it’s
object-based, rather than object-oriented, is that the resulting abstract data types are often
manipulated directly either through their set of operations or by directly accessing their data
attributes. This can tend to compromise the principle of information hiding and make resulting
programs more tightly coupled than a fully object-oriented system. Additionally, inheritance and
polymorphism are not required. There is more analysis and design required by this approach,
and entity based methodologies like Information Modeling and Information Engineering tend to
be very helpful. This style tends to support languages like Visual Basic that provide support for
objects, but not true inheritance and polymorphism.

PowerBuilder provides support for this programming style since all of the painters create objects,
and there is an additional painter - the UserObject Painter - that allows developers to create their
own objects. Data and operations can then be combined in these objects and a complete
program can be created by linking these objects together. Global variables and global functions
can then be avoided using this style. This style is a good stepping stone to object-oriented
development since it introduces the UserObject Painter and the concept of user defined objects.

Object-Oriented Style

In an object-oriented style, abstract data types are grouped into families of related types through
inheritance. The abstract base class of the family defines a common interface through which you
can manipulate all of the members of that family indirectly using references. Inheritance and
polymorphism rely on the use of these references and are key elements of this style. It does
however require extensive analysis and design using an object-oriented software engineering
methodology to be successful. There are two flavors of object-oriented programming.

Strongly Typed Object-Oriented Style

C++ and PowerBuilder are examples of strongly typed object-oriented programming languages.
As we discussed earlier, type checking can be done either at compile time or at run time.
Compile time type checking is the main feature I’m referring to when I talk about strong typing.
Additionally, at run time if an assignment or message is invalid a strongly typed language will halt
the application instead of simply providing an error message and continuing execution.
Examples of this can be seen when using PowerBuilder’s new DYNAMIC feature. Features like
this are provided for advanced developers to be able to control the type checking mechanism in
the language to some degree, but should be used cautiously. Strong typing tends to result in
more efficient and robust applications. This technique is able to catch more errors at compile
time and to create more efficient code when compiled since it can search for and evaluate
messages and assignments when it compiles them instead of when it runs them. PowerBuilder
in general is a strongly typed language.

Weakly Typed Object-Oriented Style

Smalltalk is an example of a weakly typed language. It does not check anything at “compile”
time, and trusts that the developer will provide the correct implementations for messages and
assignments at run time. If this isn’t the case, Smalltalk will notify the user at run time when there

17 MARCH, 1998 POWERSCRIPT WHITE PAPER

 1996 AUSTIN SOFTWARE FOUNDRY42

is an error. This approach is excellent for rapid prototyping and for very experience object-
oriented developers.

PowerBuilder contains one feature that behaves in a weakly typed manner - events. Events in
PowerBuilder may or may not exist at compile time when they are triggered or posted.
Additionally, if they don’t exist at run time PowerBuilder just continues executing the application
without notifying the user. This can be very powerful, but can also result in a great deal of
difficulty when trying to track down application bugs. It can also be expensive at run time when
PowerBuilder has to search for an event to execute in response to a message...while the user
waits!

Difficulties of Mixed Styles

Programming entirely within one of these styles tends to result in well behaved, predictable, and
maintainable programs. Mixing the styles, however, may result in a number of surprises. One of
the most expensive of which is that a program written in a mixture of styles is very difficult for
other developers to understand and maintain. Unless the styles are mixed for explicitly stated
reasons and are well documented, it can make tracking down bugs and adding features much
more difficult than it should be.

Guidelines for an Object-Oriented Programming StyleGuidelines for an Object-Oriented Programming Style

Object-oriented design and programming can only be learned from actually doing it. That means
trying things, making mistakes, and learning from those mistakes. The first classes you design
and build yourself probably won’t be that reusable, but they’ll help you learn what does and
doesn’t contribute to reuse. I can help you get started by giving you some general guidelines for
object-oriented development. These guidelines should just be a start, and you should add your
own to them as you gain experience.

Class Design

A class is essentially a very small, self-contained program. An object-oriented system is made
up of hundreds of these small programs interacting with each other. Each one of them should be
designed to perform a specific task or service, and nothing more. The key to good class design
is encapsulation, and providing an easy to use interface to all of the behaviors “encapsulated”
within a class.

Public Interface

Everything in your system should be expressed as part of the public interface to the classes that
make up your system. Attributes are not part of a public interface, only messages that can be
sent to a class from outside of it are part of its interface. These public interfaces must be intuitive
and easy to use, otherwise people won’t reuse your classes. All of the messages that make up
those interfaces should be closely related to the classes they reside within, should require a
small number of parameters, and should be consistent with the other messages provided in a
given class’ interface.

Attributes (Shared and Instance Variables)

POWERSCRIPT WHITE PAPER 17 MARCH, 1998

 1996 AUSTIN SOFTWARE FOUNDRY 43

You'll declare most of your class attributes as instance variables in your custom classes. These
should have private access unless they are part of the protected interface to descendent
classes, in which case they would be declared as protected. If you do neither, the variables will
be declared public by default in PowerBuilder and would violate the principle of information
hiding. Public instance variables are one of those features in PowerBuilder that make it easier for
developers to migrate to object-oriented development, but should be discarded as soon as your
get there.

Methods (Object Functions and Events)

A method is better understandable if it is small (less than 100 lines) and coherent (provides a
single, specific operation). Its behavior should be closely related to the class it is implemented
within—a given using sound analysis techniques practiced by ASF and other reputable object-
oriented analysts. A good technique for method names is to use a "verb-object" pattern (for
instance, set_title). A list of common verbs and common objects used in an application is a
valuable tool for ensuring consistent method names. Take a look at the Microsoft Windows API
for inspiration. And remember, methods implemented as events are part of the public interface
to a class in PowerBuilder.

Hierarchy Design

Inheritance is not the only way to reuse common code in a class. An association or aggregation
to another class provides access to all of the behaviors of that class, and is more loosely
coupled than being inherited from it. Inheritance should be used to implement a common public
interface among a family of classes, and to provide the foundation for overriding, extending or
specializing that interface (polymorphism). When you do use inheritance, pay careful attention to
the protected attributes and methods of the base classes. These are the interface to descendent
classes, and should be designed as carefully as the public interface to classes outside the
hierarchy.

Design vs. Implementation

The actual classes, attributes and methods used to implement an application should exactly
match those specified in an object model during analysis and design. Reusable classes don’t get
created “on-the-fly”. They take careful planning and design, and often lots of iterations between
design and implementation as you experiment with different things. You may find that you need
to do things like introduce additional or different names when you implement a class, add
additional public methods or protected attributes once you actually try to reuse a class in a
situation different than the one it was designed for, and so on. If you find yourself making these
kind of changes during implementation, make sure you go back and update them in your object
models so that they match in both places. The object models are your blueprints, and should be
used to constantly evaluate the state of your system design.

Program Code Conventions and StandardsProgram Code Conventions and Standards

The goals of adopting a set of coding and naming standards are readability, reliability and
reusability. The three R’s of coding and naming standards are closely related. If any experienced
PowerBuilder developer can easily read your scripts, you achieve all three goals. Naming
conventions, indentation, and comments are three of the most effective tools for making scripts

17 MARCH, 1998 POWERSCRIPT WHITE PAPER

 1996 AUSTIN SOFTWARE FOUNDRY44

readable. Consistent coding standards and naming conventions increase the reliability of objects
by limiting the ability of the language to cause developers problems. You could give a window
object and a menu object the same name, for instance, but you probably won't like the runtime
result. This section outlines some of the highlights of the Powersoft coding standards. You'll find
a complete discussion, with naming convention standards, in Appendix D.

Case

Use upper case for names of standard data types such as INTEGER and STRING and class
names such as N_ORDER. Also use upper case for PowerBuilder key words like FOR, NEXT,
IF, CONNECT and so on. Names of predefined PowerBuilder objects, functions or expressions
should be written with the first letter of each word capitalized (for example: SetTransObject(),
Error, or Message). All other identifiers (attributes, function arguments, or local variables) should
be written in lower case. These conventions improve the readability of your scripts if you adhere
to them. PowerScript itself ignores case and if you use any of the drop down list boxes in the
PowerScript editor it will discard the use of case.

Considerations when Naming Variables

Choose names carefully. All names should accurately describe the classes, attributes and
methods that they implement, and should be consistent with their real world counterparts as
much as possible. Naturally, cryptic abbreviations are best avoided. When you need to create a
multiword names, always put the most important word or words first. A complete identifier, or
variable, includes information about the scope of the name, the accessibility of the name outside
of the class, the type of value the identifier can hold, and some description of what the identifier
is.

Summary
The PowerScript language is much more powerful than many developers realize when they first
learn PowerBuilder. The painters hide so many of the features of the language that it takes
awhile to really explore them. In this paper I’ve laid out the basic principles of the PowerScript
language, and related them to three different programming style - procedural, object-based and
object-oriented. The natural progression is for developers to begin using PowerScript as a
procedural language and then progress to an object-oriented style. My recommendation is that
this is an excellent approach, but you should remember to discard certain language features as
you progress to a new style and begin to utilize new features that support that style. For
example, global variables and global functions are examples of features in PowerBuilder you
won’t see in a fully object-oriented application. Polymorphism is an excellent example of a
feature that is best attempted only in a fully object-oriented style.

